Practical Implementation of Recursive Subspace Identification on Seismically Excited Structures with Fixed Window
Abstract
1. Introduction
2. Recursive Formulation
2.1. Subspace Identification (SI)
2.2. Recursive Subspace Identification (RSI)
3. Numerical Simulation
3.1. User-Defined Parameter
3.2. Noise Effect
3.3. Computation Time
4. Experimental Validation
4.1. Experiment of 3-Story Steel Frame
4.2. Experiment of 10-Story Concrete Frame
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rytter, A. Vibrational Based Inspection of Civil Engineering Structures. Ph.D. Thesis, Department of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark, 1993. [Google Scholar]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review; SAGE Publications: New York, NY, USA, 1996. [Google Scholar]
- Loh, C.H.; Tou, I.C. A system identification approach to the detection of changes in both linear and non-linear structural parameters. Earthq. Eng. Struct. Dyn. 1995, 24, 85–97. [Google Scholar] [CrossRef]
- Loh, C.H.; Lin, H.M. Application of off-line and on-line identification techniques to building seismic response data. Earthq. Eng. Struct. Dyn. 1996, 25, 269–290. [Google Scholar] [CrossRef]
- Lin, J.W.; Betti, R.; Smyth, A.W.; Longman, R.W. On-line identification of non-linear hysteretic structural systems using a variable trace approach. Earthq. Eng. Struct. Dyn. 2001, 30, 1279–1303. [Google Scholar] [CrossRef]
- Yang, J.N.; Lin, S. On-line identification of non-linear hysteretic structures using an adaptive tracking technique. Int. J. Non-Linear Mech. 2004, 39, 1481–1491. [Google Scholar] [CrossRef]
- Yang, J.N.; Huang, H. Sequential non-linear least-square estimation for damage identification of structures with unknown inputs and unknown outputs. Int. J. Non-Linear Mech. 2007, 42, 789–801. [Google Scholar] [CrossRef]
- Hoshiya, M.; Saito, E. Structural Identification by Extended Kalman Filter. J. Eng. Mech. 1984, 110, 1757–1770. [Google Scholar] [CrossRef]
- Yang, J.N.; Lin, S.; Huang, H.; Zhou, L. An adaptive extended Kalman filter for structural system and damage identifications. J. Struct. Control. Health Monit. 2006, 13, 849–867. [Google Scholar] [CrossRef]
- Yang, J.N.; Lin, S.; Zhou, L. Identification of parametric changes for civil engineering structures using an adaptive Kalman filter. In Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; SPIE: Los Angel, CA, USA, 2004; Volume 5391, pp. 389–399. [Google Scholar]
- Zhou, L.; Wu, S.; Yang, J.N. Experimental study of an adaptive extended Kalman filter for structural damage identification. J. Infrastruct. Syst. 2008, 14, 42–51. [Google Scholar] [CrossRef][Green Version]
- Yin, Q.; Zhou, L.; Mu, T.; Yang, J.N. Experimental study on damage detection of base-isolated structure using an adaptive extended Kalman filter. J. Theor. Appl. Mech. 2013, 51, 1013–1026. [Google Scholar]
- Sato, T.; Qi, K. Adaptive H∞ filter: Its application to structural identification. J. Eng. Mech. 1998, 124, 1233–1240. [Google Scholar] [CrossRef]
- Yoshida, I. Damage detection using Monte Carlo filter based on non-Gaussian noises. In Proceedings of the 8th International Conference on Structural Safety and Reliability, Newport Beach, CA, USA, 17–22 June 2001. [Google Scholar]
- Van Overschee, P.; De Moor, B. Subspace algorithms for the stochastic identification problem. Automatica 1993, 29, 649–660. [Google Scholar] [CrossRef]
- Van Overschee, P.; De Moor, B. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 1994, 30, 75–93. [Google Scholar] [CrossRef]
- Yang, B. Projection approximation subspace tracking. IEEE Trans. Signal Process. 1995, 43, 95–107. [Google Scholar] [CrossRef]
- Oku, H.; Kimura, H. Recursive algorithms of the state-space subspace system identification. Trans. Soc. Instrum. Control Eng. 1999, 35, 800–805. [Google Scholar] [CrossRef][Green Version]
- Oku, H.; Kimura, H. A recursive 4SID from the input-output point of view. Asian J. Control 1999, 1, 258–269. [Google Scholar] [CrossRef]
- Oku, H.; Nijsse, G.; Verhaegen, M.; Verdult, V. Change detection in the dynamics with recursive subspace identification. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 3, pp. 2297–2302. [Google Scholar]
- Tamaoki, M.; Akizuki, K.; Oura, K. Order and parameter estimation of time-varying system by subspace method. Electr. Eng. Jpn. 2006, 157, 57–64. [Google Scholar] [CrossRef]
- Gustafsson, T. Recursive system identification using instrumental variable subspace tracking. IFAC Proc. Vol. 1997, 30, 1579–1584. [Google Scholar] [CrossRef]
- Yu, J.L. A novel subspace tracking using correlation-based projection approximation. Signal Process. 2000, 80, 2517–2525. [Google Scholar] [CrossRef]
- Mercère, G.; Lecoeuche, S.; Vasseur, C. A new recursive method for subspace identification of noisy systems: EIVPM. IFAC Proc. Vol. 2003, 36, 1597–1602. [Google Scholar] [CrossRef]
- Mercère, G.; Bako, L.; Lecœuche, S. Propagator-based methods for recursive subspace model identification. Signal Process. 2008, 88, 468–491. [Google Scholar] [CrossRef]
- Weng, J.H.; Loh, C.H. Recursive subspace identification for on-line tracking of structural modal parameter. Mech. Syst. Signal Process. 2011, 25, 2923–2937. [Google Scholar] [CrossRef]
- Chen, J.D.; Loh, C.H. Tracking modal parameters of building structures from experimental studies and earthquake response measurements. Struct. Health Monit. 2017, 16, 551–567. [Google Scholar] [CrossRef]
- Loh, C.H.; Chen, J.D. Tracking modal parameters from building seismic response data using recursive subspace identification algorithm. Earthq. Eng. Struct. Dyn. 2017, 46, 2163–2183. [Google Scholar] [CrossRef]
- Chen, J.D.; Loh, C.H. Two-stage damage detection algorithms of structure using modal parameters identified from recursive subspace identification. Earthq. Eng. Struct. Dyn. 2018, 47, 573–593. [Google Scholar] [CrossRef]
- Huang, S.K.; Chen, J.D.; Loh, K.J.; Loh, C.H. Discussion of user-defined parameters for recursive subspace identification: Application to seismic response of building structures. Earthq. Eng. Struct. Dyn. 2020, 49, 1738–1757. [Google Scholar] [CrossRef]
- Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory—Implementation—Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Verhaegen, M. Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 1994, 30, 61–74. [Google Scholar] [CrossRef]
- Gustafsson, T. Subspace identification using instrumental variable techniques. Automatica 2001, 37, 2005–2010. [Google Scholar] [CrossRef]
- Johnstone, R.M.; Johnson Jr, C.R.; Bitmead, R.R.; Anderson, B.D. Exponential convergence of recursive least squares with exponential forgetting factor. Syst. Control Lett. 1982, 2, 77–82. [Google Scholar] [CrossRef]
- Bittanti, S.; Bolzern, P.; Campi, M. Convergence and exponential convergence of identification algorithms with directional forgetting factor. Automatica 1990, 26, 929–932. [Google Scholar] [CrossRef]
- Kameyama, K.; Ohsumi, A.; Matsuura, Y.; Sawada, K. Recursive 4SID-based identification algorithm with fixed input-output data size. Int. J. Innov. Comput. Inf. Control 2005, 1, 17–33. [Google Scholar]
- Kameyama, K.; Ohsumi, A. Subspace-based prediction of linear time-varying stochastic systems. Automatica 2007, 43, 2009–2021. [Google Scholar] [CrossRef]
- Pappa, R.S. Eigensystem Realization Algorithm User’s Guide for VAX/VMS Computers: Version 931216; (No. NASA-TM-109066), NASA Report; NASA: Washington, DC, USA, 1994. [Google Scholar]
- Döhler, M. Subspace-Based System Identification and Fault Detection: Algorithms for Large Systems and Application to Structural Vibration Analysis. Ph.D. Thesis, Université Rennes 1, Rennes, Germany, 2011. [Google Scholar]
- Liu, Y.C.; Loh, C.H.; Ni, Y.Q. Stochastic subspace identification for output-only modal analysis: Application to super high-rise tower under abnormal loading condition. Earthq. Eng. Struct. Dyn. 2013, 42, 477–498. [Google Scholar] [CrossRef]
- Nord, T.S.; Petersen Ø, W.; Hendrikse, H. Stochastic subspace identification of modal parameters during ice–structure interaction. Philos. Trans. R. Soc. A 2019, 377, 20190030. [Google Scholar] [CrossRef]
- The Math Works, Inc. MATLAB, Version 2021a; The Math Works, Inc.: Natick, MA, USA, 2020. [Google Scholar]
- Chase, J.G.; Begoc, V.; Barroso, L.R. Efficient structural health monitoring for a benchmark structure using adaptive RLS filters. Comput. Struct. 2005, 83, 639–647. [Google Scholar] [CrossRef]
- Ramos, L.F.; Aguilar, R.; Lourenço, P.B.; Moreira, S. Dynamic structural health monitoring of Saint Torcato church. Mech. Syst. Signal Process. 2013, 35, 1–15. [Google Scholar] [CrossRef]
- Bao, Y.; Li, H.; Ou, J. Emerging data technology in structural health monitoring: Compressive sensing technology. J. Civ. Struct. Health Monit. 2014, 4, 77–90. [Google Scholar] [CrossRef]
- Kottapalli, V.A.; Kiremidjian, A.S.; Lynch, J.P.; Carryer, E.D.; Kenny, T.W.; Law, K.H.; Lei, Y. Two-tiered wireless sensor network architecture for structural health monitoring. In Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures; SPIE: Bellingham, WA, USA, 2003; Volume 5057, pp. 8–19. [Google Scholar]
- Wong, K.Y. Instrumentation and health monitoring of cable-supported bridges. Struct. Control Health Monit. 2004, 11, 91–124. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Xia, Y.; Liao, W.Y.; Ko, J.M. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Struct. Control Health Monit. 2009, 16, 73–98. [Google Scholar] [CrossRef]
- Giles, R.K. Development of a Long-Term, Multimetric Structural Health Monitoring System for a Historic Steel Truss Swing Bridge; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2013. [Google Scholar]
- Tosauchi, Y.; Sato, E.; Fukuyama, K.; Inoue, T.; Kajiwara, K.; Shiohara, H.; Mukai, T. 2015 Three-dimensional Shaking Table Test of a 10-story Reinforced Concrete Building on the E-Defense. In Proceedings of the 16th World Conference on Earthquake, Santiago, Chile, 9–13 January 2017. [Google Scholar]
Mode Number | 1st | 2nd | 3rd | 4th |
---|---|---|---|---|
Frequency (Hz) | 1.0174 | 3.0176 | 4.9150 | 6.6450 |
Mode Number | 5th | 6th | 7th | 8th |
Frequency (Hz) | 8.1487 | 9.3750 | 10.2820 | 10.8388 |
Measurement | 2nd, 4th, 6th, and 8th Floor | |||||
---|---|---|---|---|---|---|
i | 20 | |||||
CMAC | 0.98 | |||||
Sampling Rate (Hz) | 500 | 250 | 200 | 100 | 50 | 40 |
Total Computation Time (seconds) | 214.77 | 100.89 | 80.58 | 36.23 | 15.97 | 12.03 |
Averaged Computation Time (ms) | 10.96 | 10.51 | 10.6 | 10.06 | 9.97 | 10.01 |
Measurement | 2nd, 4th, 6th, and 8th Floor | |||||
---|---|---|---|---|---|---|
CE | around 4 | |||||
CMAC | 0.98 | |||||
i | 100 | 50 | 40 | 20 | 10 | 8 |
Sampling Rate (Hz) | 500 | 250 | 200 | 100 | 50 | 40 |
Total Computation Time (seconds) | 5763.64 | 574.62 | 268.68 | 36.23 | 7.79 | 4.98 |
Averaged Computation Time (ms) | 320.17 | 63.83 | 37.31 | 10.06 | 4.32 | 3.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-K.; Chi, F.-C.; Weng, Y.-T. Practical Implementation of Recursive Subspace Identification on Seismically Excited Structures with Fixed Window. Appl. Sci. 2022, 12, 10841. https://doi.org/10.3390/app122110841
Huang S-K, Chi F-C, Weng Y-T. Practical Implementation of Recursive Subspace Identification on Seismically Excited Structures with Fixed Window. Applied Sciences. 2022; 12(21):10841. https://doi.org/10.3390/app122110841
Chicago/Turabian StyleHuang, Shieh-Kung, Fu-Chung Chi, and Yuan-Tao Weng. 2022. "Practical Implementation of Recursive Subspace Identification on Seismically Excited Structures with Fixed Window" Applied Sciences 12, no. 21: 10841. https://doi.org/10.3390/app122110841
APA StyleHuang, S.-K., Chi, F.-C., & Weng, Y.-T. (2022). Practical Implementation of Recursive Subspace Identification on Seismically Excited Structures with Fixed Window. Applied Sciences, 12(21), 10841. https://doi.org/10.3390/app122110841