Impact of Altering the Ratio of Black Tea Granules and Ocimum gratissimum Leaves in a Binary Infusion on Radical Scavenging Potential Employing Cell Free Models and Ex Vivo Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Black Tea (BT) and O. gratissimum (OG) Aqueous Infusions
2.2. Preparation
2.3. Determination of Antioxidant Capacity, Hemolysis, Lipid Peroxidation, Total Phenolic, and Total Flavonoid Content
2.4. Combination Index (CI) and Interaction Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bansode, P.A.; Shinde, R.A.; Kamble, V.S. Spectrophotometric Determination of Total Phenolic Content of Some commonly Consumed Teas in India. Bionano Front. 2014, 7, 78–80. [Google Scholar]
- Wei, C.; Yang, H.; Wang, S.; Zhao, J.; Liu, C.; Gao, L.; Wan, X. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc. Natl. Acad. Sci. USA 2018, 115, E4151–E4158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Hua, J.; Jiang, Y.; Yang, Y.; Wang, J.; Yuan, H. Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances. Food Res. Int. 2020, 136, 109479. [Google Scholar] [CrossRef]
- Samarina, L.S.; Matskiv, A.O.; Shkhalakhova, R.M.; Koninskaya, N.G.; Hanke, M.-V.; Flachowsky, H.; Shumeev, A.N.; Manakhova, K.A.; Malyukova, L.S.; Liu, S.; et al. Genetic Diversity and Genome Size Variability in the Russian Genebank Collection of Tea Plant [Camellia sinensis (L). O. Kuntze]. Front. Plant Sci. 2022, 12, 800141. [Google Scholar] [CrossRef] [PubMed]
- Sen, G.; Bera, B. Mini review Black tea as a part of daily diet: A boon for healthy living. Int. J. Tea Sci. 2013, 9, 51–59. [Google Scholar]
- Pincemaille, J.; Schummer, C.; Heinen, E.; Moris, G. Determination of polycyclic aromatic hydrocarbons in smoked and nonsmoked black teas and tea infusions. Food Chem. 2014, 145, 807–813. [Google Scholar] [CrossRef]
- Alasalvar, C.; Topal, B.; Serpen, A.; Bahar, B.; Pelvan, E.; Gookmen, V. Flavour characteristics of seven grades of black tea produced in Turkey. J. Agric. Food Chem. 2012, 60, 6323–6332. [Google Scholar] [CrossRef]
- Carloni, P.; Tiano, L.; Padella, L.; Bacchetti, T.; Customu, C.; Kay, A.; Damiani, E. Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Res. Int. 2013, 5, 900–908. [Google Scholar] [CrossRef]
- Zhu, K.J.; Ouyang, J.; Huang, Z.; Liu. Research progress of black tea thearubigins: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1556–1566. [Google Scholar] [CrossRef]
- Shi, M.; Lu, Y.; Wu, J.; Zheng, Z.; Lv, C.; Ye, J.; Qin, S.; Zeng, C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int. J. Mol. Sci. 2022, 23, 7595. [Google Scholar] [CrossRef]
- Almajano, M.P.; Carbo, R.; Jimenez, J.A.L.; Gordon, M.H. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008, 10, 55–63. [Google Scholar] [CrossRef]
- Fatima, M.; Rizvi, S.I. Health beneficial effects of black tea. Biomedicine 2011, 31, 3–8. [Google Scholar]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2018, 58, 1310–1329. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Chawla, P.; Tripathi, M.; Shukla, A.K.; Pandey, A. Synergistic antioxidant activity of tea with ginger, black pepper and tulsi. Int. J. Pharm. Pharm. Sci. 2014, 6, 477–479. [Google Scholar]
- Zhang, Y.F.; Xu, Q.; Lu, J.; Wang, P.; Zhang, H.W.; Zhou, L.; Ma, X.Q.; Zhou, Y.H. Tea consumption and the incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Eur. J. Cancer Prev. 2015, 24, 353–362. [Google Scholar] [CrossRef]
- Enko, J.; Gliszczynska-Swigło, A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit. Contam. Part A 2015, 32, 1234–1242. [Google Scholar] [CrossRef]
- Muhammad, A.R.; Ahmad, M.T.; Zakaria, R.; Rahim, H.R.A.; Yusoff, S.F.A.Z.; Hamdan, K.S.; Yusof, H.H.M.; Arof, H.; Harun, S.W. Q-switching pulse operation in 1.5-μm region using copper nanoparticles as saturable absorber. Chin. Phys. Lett. 2017, 34, 034205. [Google Scholar] [CrossRef] [Green Version]
- Farooq, S.; Sehgal, A. Synergistic antioxidant interactions between green tea and Ocimum gratissimum. Asian Pac. J. Trop. Biomed. 2019, 9, 333. [Google Scholar]
- Zamin, M. An analgesic and hepatoprotective Plant Ocimum gratissimum. Pak. J. Biol. Sci. PJBS 2011, 14, 954–955. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, C.; Shivika, S.; Vikas, S. Ocimum gratissimum: A review on ethnomedicinal properties, phytochemical constituents, and pharmacological profile. In Biotechnological Approaches for Medicinal and Aromatic Plants; Springer: Singapore, 2018; pp. 251–270. [Google Scholar]
- Ulanowska, M.; Olas, B. Biological Properties and prospects for the application of eugenol—A review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Guleria, K.; Sehgal, A. Additive to Antagonistic Antioxidant Interaction of Black Tea with Three Different Species of Ocimum. J. Culin. Sci. Technol. 2022, 20, 1–13. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Amin, G.R.; Adib, N.; Rastegar, H.; Shekarchi, M. Development of a validated HPLC method for the simultaneous determination of flavonoids in Cuscutachinensis Lam. by ultraviolet detection. DARU J. Pharm. Sci. 2012, 20, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimi, M.R.; Zamani, R.; Sadeghi, H.; Tayebi, A.R. An experimental study of different drying methods on the quality and quantity essential oil of Myrtuscommunis L. leaves. J. Essent. Oil Bear. Plants 2015, 18, 1395–1405. [Google Scholar] [CrossRef]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A.H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef]
- Islam, S.N.; Farooq, S.; Sehgal, A. Effect of consecutive steeping on antioxidant potential of green, oolong and black tea. Int. J. Food Sci. Technol. 2018, 53, 182–187. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitao, G.G.; Reis, A.S.; Santos, T.C.D.; Coube, C.S.; Leitao, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Ram, H.N.; Mohapatra, P. Antioxidant and antiulcer activity of aqueous extract of a polyherbal formulation. Indian J. Exp. Biol. 2006, 44, 474–480. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Okoko, T.; Ere, D. Reduction of hydrogen peroxide–induced erythrocyte damage by Carica papaya leaf extract. Asian Pac. J. Trop. Biomed. 2012, 2, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Jia, Z.; Mengcheng, T.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedula, V.S.P.; Prakash, I. The aroma, taste, color and bioactive constituents of tea. J. Med. Plant Res. 2011, 5, 2110–2124. [Google Scholar]
- UlHaq, A.; Sehgal, A. Radical Scavenging Ability of Black Tea Infusions with or Without Milk In Combination with Ocimumgratissimum. Plant Arch. 2020, 20, 2476–2480. [Google Scholar]
- Peterson, J.; Dwyer, J.; Bhagwat, S.; Haytowitz, D.; Holden, J.; Eldridge, A.L.; Aladesanmi, J. Major flavonoids in dry tea. J. Food Compos. Anal. 2005, 18, 487–501. [Google Scholar] [CrossRef]
- Shannon, E.; Jaiswal, A.K.; Abu-Ghannam, N. Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: A kinetic study. Food Res. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Liu, S.; Huang, H. Assessments of antioxidant effect of black tea extract and its rationals by erythrocyte haemolysis assay, plasma oxidation assay and cellular antioxidant activity (CAA) assay. J. Funct. Foods 2015, 18, 1095–1105. [Google Scholar] [CrossRef]
- Rababah, T.M.; Ereifej, K.I.; Esoh, R.B.; Al-u’datt, M.H.; Alrababah, M.A.; Yang, W. Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat. Prod. Res. 2011, 25, 596–605. [Google Scholar] [CrossRef]
- Jiang, H.; Engelhardt, U.H.; Thrane, C.; Maiwald, B.; Stark, J. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015, 183, 30–35. [Google Scholar] [CrossRef]
- Sonam, K.S.; Guleria, S. Synergistic antioxidant activity of natural products. Annal. Pharmacol. Pharm. 2017, 2, 1086. [Google Scholar]
- Peyrat-Maillard, M.N.; Cuvelier, M.E.; Berset, C. Antioxidant activity of phenolic compounds in 2, 2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects. J. Am. Oil Chem. Soc. 2003, 80, 1007. [Google Scholar] [CrossRef]
- Milani, J.; Amuzadeh, A.; Moetamedzadegan, A. Effect of different additives on antioxidant capacity of black tea. J. Culin. Sci. Technol. 2020, 18, 67–76. [Google Scholar] [CrossRef]
- Nedamani, E.; SadeghiMahoonak, A.; Ghorbani, M.; Kashaninejad, M. Evaluation of antioxidant interactions in combined extracts of green tea (Camellia sinensis), rosemary (Rosmarinus officinalis) and oak fruit (Quercusbranti). J. Food Sci. Technol. 2015, 52, 4565–4571. [Google Scholar] [CrossRef] [PubMed]
TEST | RATIO (BT+OG) | EC50 (µg/mL) | CI at EC50 | INTERACTION TYPE |
---|---|---|---|---|
DPPH | 1:0 | 77.86 ± 1.49 a | - | - |
3:1 | 89.13 ± 1.80 b | 1.09 | Nearly additive | |
2:1 | 91.72 ± 2.05 b,c | 1.08 | Nearly additive | |
1:1 | 93.24 ± 0.83 c | 1.10 | Slight antagonism | |
1:2 | 91.43 ± 1.89 b,c | 1.04 | Nearly additive | |
1:3 | 106.96 ± 2.30 d | 1.20 | Antagonism | |
0:1 | 93.47 ± 1.33 c | - | - | |
ABTS | 1:0 | 44.57 ± 1.46 a | - | - |
3:1 | 51.13 ± 2.16 b | 1.08 | Nearly additive | |
2:1 | 57.59 ± 1.46 c | 1.18 | Antagonism | |
1:1 | 59.58 ± 1.74 c,d | 1.20 | Antagonism | |
1:2 | 55.11 ± 2.01 c | 1.07 | Nearly additive | |
1:3 | 60.51 ± 2.32 e | 1.04 | Nearly additive | |
0:1 | 56.70 ± 2.34 c,d | - | - | |
NO | 1:0 | 48.53 ± 2.57 a | - | - |
3:1 | 47.99 ± 2.60 a | 0.94 | Nearly additive | |
2:1 | 49.96 ± 3.35 a | 1.00 | Nearly additive | |
1:1 | 55.77 ± 2.74 b | 1.17 | Antagonism | |
1:2 | 46.36 ± 2.87 a | 0.94 | Nearly additive | |
1:3 | 84.35 ± 4.10 c | 1.69 | Antagonism | |
0:1 | 50.61 ± 2.30 a | - | - | |
LPO | 1:0 | 43.81 ± 1.20 a | - | - |
3:1 | 43.62 ± 0.71 a | 0.98 | Nearly additive | |
2:1 | 50.13 ± 1.65 b | 1.10 | Slight antagonism | |
1:1 | 54.64 ± 1.20 c | 1.18 | Antagonism | |
1:2 | 46.72 ± 1.41 d | 0.99 | Nearly additive | |
1:3 | 55.35 ± 1.25 c | 1.16 | Antagonism | |
0:1 | 49.28 ± 1.55 d | - | - | |
Haemolysis | 1:0 | 36.03 ± 1.21 a | - | - |
3:1 | 36.72 ± 1.40 a | 1.00 | Nearly additive | |
2:1 | 39.55 ± 0.93 b | 1.07 | Nearly additive | |
1:1 | 44.30 ± 2.26 c | 1.20 | Antagonism | |
1:2 | 37.67 ± 1.95 a | 0.99 | Nearly additive | |
1:3 | 45.06 ± 3.33 c | 1.21 | Antagonism | |
0:1 | 39.10 ± 2.18 a | - | - |
SAMPLE | TPC (mg/100 mL) GAE | TFC (mg/100 mL) QAE |
---|---|---|
BT | 113.6 ± 2.26 a | 73.04 ± 0.66 a |
OG | 137.16 ± 1.06 b | 63.67 ± 1.53 b |
BT+OG (3:1) | 98.18 ± 0.34 c | 86.69 ± 3.45 c |
BT+OG (2:1) | 93.74 ± 0.88 d | 84.67 ± 3.34 c |
BT+OG (1:1) | 91.82 ± 0.67 d | 81.69 ± 0.43 c |
BT+OG (1:2) | 90.33 ± 0.55 d | 80.23 ± 0.60 c |
BT+OG (1:3) | 92.34 ± 0.37 d | 83.58 ± 2.06 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guleria, K.; Sehgal, A.; Bhat, I.A.; Singh, S.K.; Vamanu, E.; Singh, M.P. Impact of Altering the Ratio of Black Tea Granules and Ocimum gratissimum Leaves in a Binary Infusion on Radical Scavenging Potential Employing Cell Free Models and Ex Vivo Assays. Appl. Sci. 2022, 12, 10632. https://doi.org/10.3390/app122010632
Guleria K, Sehgal A, Bhat IA, Singh SK, Vamanu E, Singh MP. Impact of Altering the Ratio of Black Tea Granules and Ocimum gratissimum Leaves in a Binary Infusion on Radical Scavenging Potential Employing Cell Free Models and Ex Vivo Assays. Applied Sciences. 2022; 12(20):10632. https://doi.org/10.3390/app122010632
Chicago/Turabian StyleGuleria, Khushboo, Amit Sehgal, Irshad Ahmad Bhat, Sandeep Kumar Singh, Emanuel Vamanu, and Mahendra P. Singh. 2022. "Impact of Altering the Ratio of Black Tea Granules and Ocimum gratissimum Leaves in a Binary Infusion on Radical Scavenging Potential Employing Cell Free Models and Ex Vivo Assays" Applied Sciences 12, no. 20: 10632. https://doi.org/10.3390/app122010632