Mode-Locking Dynamics in an All-PM Figure-Nine Tm-Doped Fiber Laser
Abstract
1. Introduction
2. Experimental Setup
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Qin, Z.; Xie, G.; Qian, L.; Tang, D. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region. Appl. Phys. Rev. 2019, 6, 021317. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, G.; Xu, X.; Di, J.; Qin, Z.; Suomalainen, S.; Guina, M.; Härkönen, A.; Agnesi, A.; Griebner, U.; et al. SESAM mode-locked Tm:CALGO laser at 2 µm. Opt. Mater. Express 2016, 6, 131–136. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Zhao, Y.; Kowalczyk, M.; Sotor, J.; Yuan, H.; Zhang, Y.; Dai, X.; Cai, H.; Bae, J.E.; et al. Sub-80 fs mode-locked Tm,Ho-codoped disordered garnet crystal oscillator operating at 2081 nm. Opt. Lett. 2018, 43, 5154–5157. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Zhang, X.; Mateos, X.; Pan, Z.; Loiko, P.; Zhou, W.; Xu, X.; Xu, J.; Shen, D.; et al. 87 fs mode-locked Tm,Ho:CaYAlO4 laser at ∼2043 nm. Opt. Lett. 2018, 43, 915–918. [Google Scholar] [CrossRef]
- Ahmad, H.; Ahmed, M.H.M.; Samion, M.Z. Generation of mode-locked noise-like pulses in double-clad Tm-doped fibre laser with nonlinear optical loop mirror. J. Mod. Opt. 2020, 67, 146–152. [Google Scholar] [CrossRef]
- Hercher, M. An Analysis of Saturable Absorbers. Appl. Opt. 1967, 6, 947–954. [Google Scholar] [CrossRef]
- Kivisto, S.; Hakulinen, T.; Guina, M.; Okhotnikov, O.G. Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser. IEEE Photonics Technol. Lett. 2007, 19, 934–936. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Tomaszewska, D.; Soboń, G.; Dużyńska, A.; Zdrojek, M.; Sotor, J. Broadband Metallic Carbon Nanotube Saturable Absorber for Ultrashort Pulse Generation in the 1500–2100 nm Spectral Range. Appl. Sci. 2021, 11, 3121. [Google Scholar] [CrossRef]
- Ososkov, Y.; Khegai, A.; Riumkin, K.; Mkrtchyan, A.; Gladush, Y.; Krasnikov, D.; Nasibulin, A.; Yashkov, M.; Guryanov, A.; Melkumov, M. All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT. Photonics 2022, 9, 608. [Google Scholar] [CrossRef]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Light. Technol. 2004, 22, 51–56. [Google Scholar] [CrossRef]
- Sotor, J.; Bogusławski, J.; Martynkien, T.; Mergo, P.; Krajewska, A.; Przewłoka, A.; Strupiński, W.; Soboń, G. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Opt. Lett. 2017, 42, 1592–1595. [Google Scholar] [CrossRef]
- Cizmeciyan, M.N.; Kim, J.W.; Bae, S.; Hong, B.H.; Rotermund, F.; Sennaroglu, A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Opt. Lett. 2013, 38, 341–343. [Google Scholar] [CrossRef]
- Zhang, M.; Kelleher, E.J.R.; Torrisi, F.; Sun, Z.; Hasan, T.; Popa, D.; Wang, F.; Ferrari, A.C.; Popov, S.V.; Taylor, J.R. Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Express 2012, 20, 25077–25084. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Zhang, H.; Yang, J.; Wang, S.; Tang, D.Y.; Jose, R.; Ramakrishna, S.; Lim, C.T.; Loh, K.P. Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics. Adv. Funct. Mater. 2010, 20, 782–791. [Google Scholar] [CrossRef]
- Jung, M.; Koo, J.; Park, J.; Song, Y.-W.; Jhon, Y.M.; Lee, K.; Lee, S.; Lee, J.H. Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber. Opt. Express 2013, 21, 20062–20072. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Lee, J.; Jhon, Y.M.; Lee, J.H. Topological Insulators for Mode-locking of 2-μm Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lin, S.-F.; Chi, Y.-C.; Wu, C.-L.; Cheng, C.-H.; Tseng, W.-H.; He, J.-H.; Wu, C.-I.; Lee, C.-K.; Lin, G.-R. Using n- and p-Type Bi2Te3 Topological Insulator Nanoparticles To Enable Controlled Femtosecond Mode-Locking of Fiber Lasers. ACS Photonics 2015, 2, 481–490. [Google Scholar] [CrossRef]
- Zhao, C.; Zou, Y.; Chen, Y.; Wang, Z.; Lu, S.; Zhang, H.; Wen, S.; Tang, D. Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker. Opt. Express 2012, 20, 27888–27895. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wu, K.; Kong, L.; Yang, N.; Wang, Y.; Chen, R.; Hu, W.; Xu, J.; Tang, Y. Mode-locked thulium fiber laser with MoS2. Laser Phys. Lett. 2015, 12, 065104. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.; Jiang, G.; Xu, C.; Zhao, C.; Xiang, Y.; Chen, Y.; Wen, S.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 2014, 4, 6346. [Google Scholar] [CrossRef]
- Sotor, J.; Sobon, G.; Kowalczyk, M.; Macherzynski, W.; Paletko, P.; Abramski, K.M. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett. 2015, 40, 3885–3888. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, Y.; Wang, L.; Chen, W.; Chen, W.; Loiko, P.; Wang, Y.; Wang, Y.; Pan, Z.; Yang, H.; et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser. Opt. Lett. 2021, 46, 3428–3431. [Google Scholar] [CrossRef]
- Ippen, E.P.; Haus, H.A.; Liu, L.Y. Additive pulse mode locking. J. Opt. Soc. Am. B 1989, 6, 1736–1745. [Google Scholar] [CrossRef]
- Haxsen, F.; Ruehl, A.; Engelbrecht, M.; Wandt, D.; Morgner, U.; Kracht, D. Stretched-pulse operation of a thulium-doped fiber laser. Opt. Express 2008, 16, 20471–20476. [Google Scholar] [CrossRef]
- Michalska, M. Dispersion managed thulium-doped fiber laser mode-locked by the nonlinear loop mirror. Opt. Laser Technol. 2021, 138, 106923. [Google Scholar] [CrossRef]
- Hänsel, W.; Hoogland, H.; Giunta, M.; Schmid, S.; Steinmetz, T.; Doubek, R.; Mayer, P.; Dobner, S.; Cleff, C.; Fischer, M.; et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation. Appl. Phys. B 2017, 123, 41. [Google Scholar] [CrossRef]
- Haus, H.A.; Ippen, E.P.; Tamura, K. Additive-pulse modelocking in fiber lasers. IEEE J. Quantum Electron. 1994, 30, 200–208. [Google Scholar] [CrossRef]
- Donald, D.K. Optimizing Polarization States in a Figure-8 Laser Using a Nonreciprocal Phase Shifter. J Light. Technol. 1994, 12, 1121–1128. [Google Scholar] [CrossRef]
- Nishizawa, N.; Suga, H.; Yamanaka, M. Investigation of dispersion-managed, polarization-maintaining Er-doped figure-nine ultrashort-pulse fiber laser. Opt. Express 2019, 27, 19218–19232. [Google Scholar] [CrossRef]
- Mayer, A.S.; Grosinger, W.; Fellinger, J.; Winkler, G.; Perner, L.W.; Droste, S.; Salman, S.H.; Li, C.; Heyl, C.M.; Heckl, O.H. Flexible all-PM NALM Yb:fiber laser design for frequency comb applications: Operation regimes and their noise properties. Opt. Express 2020, 28, 18946–18968. [Google Scholar] [CrossRef]
- Łaszczych, Z.; Soboń, G. Dispersion management of a nonlinear amplifying loop mirror-based erbium-doped fiber laser. Opt. Express 2021, 29, 2690–2702. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, G.; Zhou, R.; Yu, D.; Wu, J.; Fu, H.Y.; Zhang, Z.; Li, Q. An all polarization-maintaining fiber laser mode locked by nonlinear amplifying loop mirror with different biases. Laser Phys. 2020, 30, 085104. [Google Scholar] [CrossRef]
- Kuse, N.; Jiang, J.; Lee, C.-C.; Schibli, T.R.; Fermann, M.E. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror. Opt. Express 2016, 24, 3095–3102. [Google Scholar] [CrossRef] [PubMed]
- Pröbster, B.J.; Pröbster, B.J.; Lezius, M.; Mandel, O.; Braxmaier, C.; Holzwarth, R. FOKUS II—Space flight of a compact and vacuum compatible dual frequency comb system. J. Opt. Soc. Am. B 2021, 38, 932–939. [Google Scholar] [CrossRef]
- Gao, G.; Zhao, Z.; Cong, Z.; Zhao, Q.; Liu, Z. Experimental Investigation of Ultrafast Yb:fiber Oscillators Based on Several Dominant Mode Locking Methods. IEEE J. Quantum Electron. 2022, 58, 1–11. [Google Scholar] [CrossRef]
- Raabe, N.; Feng, T.; Mero, M.; Tian, H.; Song, Y.; Hänsel, W.; Holzwarth, R.; Sell, A.; Zach, A.; Steinmeyer, G. Excess carrier-envelope phase noise generation in saturable absorbers. Opt. Lett. 2017, 42, 1068–1071. [Google Scholar] [CrossRef]
- Edelmann, M.; Hua, Y.; Şafak, K.; Kärtner, F.X. Intrinsic amplitude-noise suppression in fiber lasers mode-locked with nonlinear amplifying loop mirrors. Opt. Lett. 2021, 46, 1752–1755. [Google Scholar] [CrossRef]
- Dudley, J.M.; Barry, L.P.; Harvey, J.D.; Thomson, M.D.; Thomsen, B.C.; Bollond, P.G.; Leonhardt, R. Complete characterization of ultrashort pulse sources at 1550 nm. IEEE J. Quantum Electron. 1999, 35, 441–450. [Google Scholar] [CrossRef]
- Łaszczych, Z.; Soboń, G. Three states of operation in the net-normal figure-nine fiber laser at 1560 nm. Opt. Laser Technol. 2022, 152, 108107. [Google Scholar] [CrossRef]
- Fermann, M.E.; Haberl, F.; Hofer, M.; Hochreiter, H. Nonlinear amplifying loop mirror. Opt. Lett. 1990, 15, 752–754. [Google Scholar] [CrossRef]
- Shang, J.; Liu, Y.; Zhao, S.; Zhao, Y.; Song, Y.; Li, T.; Feng, T. The Investigation on Ultrafast Pulse Formation in a Tm–Ho-Codoped Mode-Locking Fiber Oscillator. Molecules 2021, 26, 3460. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.P.; Gupta, P.K.; Singh, A.J.; Sharma, S.K.; Mukhopadhyay, P.K.; Bindra, K.S.; Oak, S.M. Experimental Study on Soliton Rain Patterns in Yb-Doped All-Fiber Standing Wave Cavity Configuration. IEEE Photonics Technol. Lett. 2016, 28, 1533–1536. [Google Scholar] [CrossRef]
- Fu, B.; Popa, D.; Zhao, Z. Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser. Appl. Phys. Lett. 2018, 113, 193102. [Google Scholar] [CrossRef]
- Wang, P.; Bao, C.; Fu, B.; Xiao, X.; Grelu, C.; Yang, C. Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution. Opt. Lett. 2016, 41, 2254–2257. [Google Scholar] [CrossRef] [PubMed]
- Gui, L.; Wang, P.; Ding, Y.; Zhao, K.; Bao, C.; Xiao, X.; Yang, C. Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems. Appl. Sci. 2018, 8, 201. [Google Scholar] [CrossRef]
- Voropaev, V.; Donodin, A.; Voronets, A.; Vlasov, D.; Lazarev, V.; Tarabrin, M.; Krylov, A. Generation of multi-solitons and noise-like pulses in a high-powered thulium-doped all-fiber ring oscillator. Sci. Rep. 2019, 9, 18369. [Google Scholar] [CrossRef]
- Lin, S.-F.; Lin, Y.-H.; Cheng, C.-H.; Chi, Y.-C.; Lin, G.-R. Stability and Chirp of Tightly Bunched Solitons From Nonlinear Polarization Rotation Mode-Locked Erbium-Doped Fiber Lasers. J. Light. Technol. 2016, 34, 5118–5128. [Google Scholar] [CrossRef]
- Li, J.; Jiang, W.; Meng, Y.; Wang, F. Probing the mode-locking pattern in the parameter space of a Figure-9 laser. Opt. Lett. 2022, 47, 2606–2609. [Google Scholar] [CrossRef]
- Kelly, S.M.J. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 1992, 28, 806–807. [Google Scholar] [CrossRef]
- Edelmann, M.; Hua, Y.; Şafak, K.; Kärtner, F.X. All-optical Nonlinear Noise Suppression in State-of-the-art Fiber Oscillators and Amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 15–20 May 2022; p. SF3H.2. [Google Scholar] [CrossRef]
- Edelmann, M.; Hua, Y.; Şafak, K.; Kärtner, F.X. Nonlinear fiber amplifier for intensity-noise reduction to the shot-noise limit. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 9–14 May 2021; p. STh4N.6. [Google Scholar] [CrossRef]
- Hoogland, H.; Hänsel, W.; Holzwarth, R. Novel robust 2-μm all-PM Thulium/Holmium based femtosecond fiber laser oscillator. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 14–19 May 2017; pp. 1–2. [Google Scholar]
- Wang, X.-F.; Zhang, J.-H.; Peng, X.-L.; Mao, X.-F. Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber. Chin. Phys. B 2018, 27, 084215. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.-P.; Jiang, Z.-F.; Hou, J. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers. Sci. Rep. 2016, 6, 26431. [Google Scholar] [CrossRef] [PubMed]
- Szczepanek, J.; Kardaś, T.M.; Michalska, M.; Radzewicz, C.; Stepanenko, Y. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror. Opt. Lett. 2015, 40, 3500–3503. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.; Song, Y.; Chai, L.; Hu, M. Pulse dynamics manipulation by the phase bias in a nonlinear fiber amplifying loop mirror. Opt. Express 2019, 27, 14705. [Google Scholar] [CrossRef] [PubMed]
- Mahnke, C.; Hua, Y.; Ma, Y.; Salman, S.; Lamb, T.; Schulz, S.; Heyl, C.M.; Cankaya, H.; Hartl, I. Long-term stable, synchronizable, low-noise picosecond Ho:fiber NALM oscillator for Ho:YLF amplifier seeding. Opt. Lett. 2022, 47, 822. [Google Scholar] [CrossRef]
- Stachowiak, D.; Stachowiak, D.; Bogusławski, J.; Bogusławski, J.; Głuszek, A.; Łaszczych, Z.; Wojtkowski, M.; Soboń, G. Frequency-doubled femtosecond Er-doped fiber laser for two-photon excited fluorescence imaging. Biomed. Opt. Express 2020, 11, 4431–4442. [Google Scholar] [CrossRef]
- Renninger, W.H.; Chong, A.; Wise, F.W. Area theorem and energy quantization for dissipative optical solitons. J. Opt. Soc. Am. B 2010, 27, 1978–1982. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Martynkien, T.; Przewłoka, A.; Sotor, J. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt. Lett. 2018, 43, 38–41. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Dużyńska, A.; Zdrojek, M.; Sotor, J. Wavelength- and dispersion-tunable ultrafast holmium-doped fiber laser with dual-color operation. Opt. Lett. 2020, 45, 956–959. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łaszczych, Z.; Krakowski, M.; Soboń, G. Mode-Locking Dynamics in an All-PM Figure-Nine Tm-Doped Fiber Laser. Appl. Sci. 2022, 12, 10613. https://doi.org/10.3390/app122010613
Łaszczych Z, Krakowski M, Soboń G. Mode-Locking Dynamics in an All-PM Figure-Nine Tm-Doped Fiber Laser. Applied Sciences. 2022; 12(20):10613. https://doi.org/10.3390/app122010613
Chicago/Turabian StyleŁaszczych, Zbigniew, Mikołaj Krakowski, and Grzegorz Soboń. 2022. "Mode-Locking Dynamics in an All-PM Figure-Nine Tm-Doped Fiber Laser" Applied Sciences 12, no. 20: 10613. https://doi.org/10.3390/app122010613
APA StyleŁaszczych, Z., Krakowski, M., & Soboń, G. (2022). Mode-Locking Dynamics in an All-PM Figure-Nine Tm-Doped Fiber Laser. Applied Sciences, 12(20), 10613. https://doi.org/10.3390/app122010613