New Method for the Automated Assessment of Corneal Nerve Tortuosity Using Confocal Microscopy Imaging
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Assessment
- The OSDI questionnaire was administered to all volunteers. This instrument allows DED screening [42] and also DED severity classification: “mild” (score 13–22), “moderate” (score 23–32) and “severe” (score 33–100).
- A NRS was used to rate the severity of pain, as previously reported [43]. LASIK patients were indicated to rate their average ocular pain severity on a 10-point scale ranging from “no pain” (score 0) to “the most severe pain” (score 10). Scores ranging from 2 to 4 was considered “mild” pain, from 5 to 7 “moderate” pain, and from 8 to 10 “severe” pain.
- Corrected distance visual acuity (CDVA) was evaluated using an ETDRS chart at a 4 m distance.
- TBUT was assessed after the instillation of 5 mL of 2% sodium fluorescein. The measurement was repeated three times to obtain an average value.
- CFS was evaluated using the Oxford scheme (grade 0–5).
- Confocal microscopy assessment of the cornea. The IVCM images of the cornea were obtained using the Rostock cornea module of the Heidelberg Retina Tomograph III (Heidelberg Engineering GmbH, Heidelberg, Germany). Non-overlapping images of the central cornea focused on the sub-basal nerve plexus were obtained using sequence and/or volume scans. Each image was comprised of pixels, which represents a coronal section of μm (0.16 mm). The grade of nerve tortuosity was subjectively evaluated according to the scale (0–4) reported by Oliveira-Soto and Efron [6]. The observer who assessed each image was blinded to the LASIK group classification.
2.2. Automated Tortuosity Index
2.2.1. Nerve Tracing
2.2.2. Nerve Splitting
2.2.3. Tortuosity Characterization
2.3. Data Analysis
3. Results
3.1. Ocular Parameters
3.2. Tortuosity Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis Of Variance. |
CDVA | Corrected Distance Visual Acuity. |
CFS | Corneal Fluorescein Staining. |
CI | Confidence Interval. |
DED | Dry Eye Disease. |
IOBA | Institute of Applied Ophthalmobiology. |
IQR | InterQuartile Range. |
IVCM | In vivo confocal microscopy. |
LASIK | Laser-Assisted In Situ Keratomileusis. |
NRS | Numeric Rating Scale. |
OSDI | Ocular Surface Disease Index. |
SD | Standard Deviation. |
TBUT | Tear Break-Up Time. |
References
- Müller, L.J.; Pels, L.; Vrensen, G. Ultrastructural organization of human corneal nerves. Investig. Ophthalmol. Vis. Sci. 1996, 37, 476–488. [Google Scholar]
- Müller, L.; Vrensen, G.; Pels, L.; Cardozo, B.N.; Willekens, B. Architecture of human corneal nerves. Investig. Ophthalmol. Vis. Sci. 1997, 38, 985–994. [Google Scholar]
- Müller, L.J.; Marfurt, C.F.; Kruse, F.; Tervo, T.M. Corneal nerves: Structure, contents and function. Exp. Eye Res. 2003, 76, 521–542. [Google Scholar] [CrossRef]
- Kokot, J.; Wylęgała, A.; Wowra, B.; Wójcik, Ł.; Dobrowolski, D.; Wylęgała, E. Corneal confocal sub-basal nerve plexus evaluation: A review. Acta Ophthalmol. 2018, 96, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, W.; Thaer, A.A.; Kroll, P.; Geyer, O.C.; Garcia, A.J. Optical sectioning of the cornea with a new confocal in vivo slit-scanning videomicroscope. Ophthalmology 1995, 102, 568–575. [Google Scholar] [CrossRef]
- Oliveira-Soto, L.; Efron, N. Morphology of corneal nerves using confocal microscopy. Cornea 2001, 20, 374–384. [Google Scholar] [CrossRef]
- Edwards, K.; Pritchard, N.; Vagenas, D.; Russell, A.; Malik, R.; Efron, N. Standardizing corneal nerve fibre length for nerve tortuosity increases its association with measures of diabetic neuropathy. Diabet. Med. 2014, 31, 1205–1209. [Google Scholar] [CrossRef]
- Annunziata, R.; Kheirkhah, A.; Aggarwal, S.; Hamrah, P.; Trucco, E. A fully automated tortuosity quantification system with application to corneal nerve fibres in confocal microscopy images. Med. Image Anal. 2016, 32, 216–232. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Markoulli, M. Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin. Exp. Optom. 2018, 101, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Xie, J.; Yang, T.; Su, P.; Liu, R.; Sun, T.; Zhou, Y.; Wang, H.; Feng, X.; Ma, S.; et al. Quantification of Increased Corneal Subbasal Nerve Tortuosity in Dry Eye Disease and Its Correlation With Clinical Parameters. Transl. Vis. Sci. Technol. 2021, 10, 26. [Google Scholar] [CrossRef]
- Patel, S.; Hwang, J.; Mehra, D.; Galor, A. Corneal nerve abnormalities in ocular and systemic diseases. Exp. Eye Res. 2021, 202, 108284. [Google Scholar] [CrossRef]
- Kallinikos, P.; Berhanu, M.; O’Donnell, C.; Boulton, A.J.; Efron, N.; Malik, R.A. Corneal nerve tortuosity in diabetic patients with neuropathy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 418–422. [Google Scholar] [CrossRef]
- Villani, E.; Galimberti, D.; Viola, F.; Mapelli, C.; Mojana, F.; Pirondini, C.; Ratiglia, R. The cornea in Sjögren’s syndrome: An in vivo confocal study. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1365. [Google Scholar] [CrossRef]
- Labbé, A.; Liang, Q.; Wang, Z.; Zhang, Y.; Xu, L.; Baudouin, C.; Sun, X. Corneal nerve structure and function in patients with non-Sjögren dry eye: Clinical correlations. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5144–5150. [Google Scholar] [CrossRef] [Green Version]
- Levy, O.; Labbé, A.; Borderie, V.; Hamiche, T.; Dupas, B.; Laroche, L.; Baudouin, C.; Bouheraoua, N. Increased corneal sub-basal nerve density in patients with Sjögren syndrome treated with topical cyclosporine A. Clin. Exp. Ophthalmol. 2017, 45, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Cardigos, J.; Barcelos, F.; Carvalho, H.; Hipólito, D.; Crisóstomo, S.; Vaz-Patto, J.; Alves, N. Tear meniscus and corneal sub-basal nerve plexus assessment in primary Sjögren syndrome and Sicca syndrome patients. Cornea 2019, 38, 221–228. [Google Scholar] [CrossRef]
- Ma, B.; Zhao, K.; Ma, S.; Liu, R.; Gao, Y.; Hu, C.; Xie, J.; Liu, Y.; Zhao, Y.; Qi, H. Objective analysis of corneal subbasal nerve tortuosity and its changes in patients with dry eye and diabetes. Chin. J. Exp. Ophthalmol. 2019, 12, 638–644. [Google Scholar]
- Lambiase, A.; Micera, A.; Sacchetti, M.; Cortes, M.; Mantelli, F.; Bonini, S. Alterations of tear neuromediators in dry eye disease. Arch. Ophthalmol. 2011, 129, 981–986. [Google Scholar] [CrossRef]
- Galor, A.; Levitt, R.; Felix, E.; Martin, E.; Sarantopoulos, C. Neuropathic ocular pain: An important yet underevaluated feature of dry eye. Eye 2015, 29, 301–312. [Google Scholar] [CrossRef]
- Belmonte, C.; Nichols, J.J.; Cox, S.M.; Brock, J.A.; Begley, C.G.; Bereiter, D.A.; Dartt, D.A.; Galor, A.; Hamrah, P.; Ivanusic, J.J.; et al. TFOS DEWS II pain and sensation report. Ocul. Surf. 2017, 15, 404–437. [Google Scholar] [CrossRef] [Green Version]
- Darwish, T.; Brahma, A.; O’Donnell, C.; Efron, N. Subbasal nerve fiber regeneration after LASIK and LASEK assessed by noncontact esthesiometry and in vivo confocal microscopy: Prospective study. J. Cataract. Refract. Surg. 2007, 33, 1515–1521. [Google Scholar] [CrossRef]
- Roszkowska, A.M.; Wylęgała, A.; Gargano, R.; Spinella, R.; Inferrera, L.; Orzechowska-Wylęgała, B.; Aragona, P. Impact of corneal parameters, refractive error and age on density and morphology of the subbasal nerve plexus fibers in healthy adults. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, X.; Yu, X.; Qin, Q.; Yu, N.; Ke, W.; Wang, K.; Chen, M. Corneal in vivo Confocal Microscopy for Assessment of Non-Neurological Autoimmune Diseases: A Meta-Analysis. Front. Med. 2022, 9, 809164. [Google Scholar] [CrossRef]
- Klisser, J.; Tummanapalli, S.S.; Kim, J.; Chiang, J.C.B.; Khou, V.; Issar, T.; Naduvilath, T.; Poynten, A.M.; Markoulli, M.; Krishnan, A.V. Automated analysis of corneal nerve tortuosity in diabetes: Implications for neuropathy detection. Clin. Exp. Optom. 2021, 105, 487–493. [Google Scholar] [CrossRef]
- Wang, X.; Rumpel, H.; Baskaran, M.; Tun, T.A.; Strouthidis, N.; Perera, S.A.; Nongpiur, M.E.; Lim, W.E.; Aung, T.; Milea, D.; et al. Optic nerve tortuosity and globe proptosis in normal and glaucoma subjects. J. Glaucoma. 2019, 28, 691–696. [Google Scholar] [CrossRef]
- Hamrah, P.; Cruzat, A.; Dastjerdi, M.H.; Prüss, H.; Zheng, L.; Shahatit, B.M.; Bayhan, H.A.; Dana, R.; Pavan-Langston, D. Unilateral herpes zoster ophthalmicus results in bilateral corneal nerve alteration: An in vivo confocal microscopy study. Ophthalmology 2013, 120, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Kurbanyan, K.; Hoesl, L.; Schrems, W.; Hamrah, P. Corneal nerve alterations in acute Acanthamoeba and fungal keratitis: An in vivo confocal microscopy study. Eye 2012, 26, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Hamrah, P.; Cruzat, A.; Dastjerdi, M.H.; Zheng, L.; Shahatit, B.M.; Bayhan, H.A.; Dana, R.; Pavan-Langston, D. Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: An in vivo confocal microscopy study. Ophthalmology 2010, 117, 1930–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpa, F.; Zheng, X.; Ohashi, Y.; Ruggeri, A. Automatic evaluation of corneal nerve tortuosity in images from in vivo confocal microscopy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6404–6408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullitt, E.; Gerig, G.; Pizer, S.M.; Lin, W.; Aylward, S.R. Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging 2003, 22, 1163–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisan, E.; Foracchia, M.; Ruggeri, A. A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imaging 2008, 27, 310–319. [Google Scholar] [CrossRef]
- Goh, K.G.; Hsu, W.; Li Lee, M.; Wang, H. ADRIS: An automatic diabetic retinal image screening system. Stud. Fuzziness Soft Comput. 2001, 60, 181–210. [Google Scholar]
- Bribiesca, E. A measure of tortuosity based on chain coding. Pattern Recognit. 2013, 46, 716–724. [Google Scholar] [CrossRef]
- Mehrgardt, P.; Zandavi, S.M.; Poon, S.K.; Kim, J.; Markoulli, M.; Khushi, M. U-net segmented adjacent angle detection (USAAD) for automatic analysis of corneal nerve structures. Data 2020, 5, 37. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Pereira, E.; Zheng, Y.; Su, P.; Xie, J.; Zhao, Y.; Shi, Y.; Qi, H.; Liu, J.; et al. Automated tortuosity analysis of nerve fibers in corneal confocal microscopy. IEEE Trans. Med. Imaging 2020, 39, 2725–2737. [Google Scholar] [CrossRef] [Green Version]
- Su, P.; Chen, T.; Xie, J.; Zheng, Y.; Qi, H.; Borroni, D.; Zhao, Y.; Liu, J. Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction. Med. Phys. 2020, 47, 4983–4996. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Li, W.; Huang, X. Semiautomated and Automated Quantitative Analysis of Corneal Sub-Basal Nerves in Patients With DED With Ocular Pain Using IVCM. Front. Med. 2022, 9, 831307. [Google Scholar] [CrossRef]
- Giannaccare, G.; Pellegrini, M.; Sebastiani, S.; Moscardelli, F.; Versura, P.; Campos, E.C. In vivo confocal microscopy morphometric analysis of corneal subbasal nerve plexus in dry eye disease using newly developed fully automated system. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 583–589. [Google Scholar] [CrossRef]
- Mehrgardt, P.; Khushi, M.; Poon, S.; Withana, A. Deep Learning Fused Wearable Pressure and PPG Data for Accurate Heart Rate Monitoring. IEEE Sens. J. 2021, 21, 27106–27115. [Google Scholar] [CrossRef]
- Chin, J.Y.; Yang, L.W.Y.; Ji, A.J.S.; Nubile, M.; Mastropasqua, L.; Allen, J.C.; Mehta, J.S.; Liu, Y.C. Validation of the use of automated and manual quantitative analysis of corneal nerve plexus following refractive surgery. Diagnostics 2020, 10, 493. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II diagnostic methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Satitpitakul, V.; Kheirkhah, A.; Crnej, A.; Hamrah, P.; Dana, R. Determinants of ocular pain severity in patients with dry eye disease. Am. J. Ophthalmol. 2017, 179, 198–204. [Google Scholar] [CrossRef]
- Beucher, S.; Meyer, F. The morphological approach to segmentation: The watershed transformation. In Mathematical Morphology in Image Processing; CRC Press: Boca Raton, FL, USA, 2018; pp. 433–481. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hoşal, B.; Örnek, N.; Zilelioğlu, G.; Elhan, A. Morphology of corneal nerves and corneal sensation in dry eye: A preliminary study. Eye 2005, 19, 1276–1279. [Google Scholar] [CrossRef]
- Dogan, A.S.; Gurdal, C.; Arslan, N. Corneal confocal microscopy and dry eye findings in contact lens discomfort patients. Cont. Lens. Anterior. Eye 2018, 41, 101–104. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Luo, L.; Xiao, Q.; Sun, M.; Liu, Z. Altered corneal nerves in aqueous tear deficiency viewed by in vivo confocal microscopy. Cornea 2005, 24, 818–824. [Google Scholar] [CrossRef]
- Villani, E.; Magnani, F.; Viola, F.; Santaniello, A.; Scorza, R.; Nucci, P.; Ratiglia, R. In vivo confocal evaluation of the ocular surface morpho-functional unit in dry eye. Optom. Vis. Sci. 2013, 90, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Ponirakis, G.; Ghandi, R.; Ahmed, A.; Gad, H.; Petropoulos, I.N.; Khan, A.; Elsotouhy, A.; Vattoth, S.; Alshawwaf, M.K.; Khoodoruth, M.A.S.; et al. Abnormal corneal nerve morphology and brain volume in patients with schizophrenia. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Bitirgen, G.; Korkmaz, C.; Zamani, A.; Ozkagnici, A.; Zengin, N.; Ponirakis, G.; Malik, R.A. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef]
- Shen, F.; Dong, X.; Zhou, X.; Yan, L.; Wan, Q. Corneal subbasal nerve plexus changes in patients with episodic migraine: An in vivo confocal microscopy study. J. Pain. Res. 2019, 12, 1489. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gonzalez, M.; Cañadas, P.; Gros-Otero, J.; Rodriguez-Perez, I.; Cañones-Zafra, R.; Kozobolis, V.; Teus, M.A. Long-term corneal subbasal nerve plexus regeneration after laser in situ keratomileusis. J. Cataract. Refract. Surg. 2019, 45, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Moreno, A.; Liang, H.; Moreau, N.; Luzu, J.; Rabut, G.; Parsadaniantz, S.M.; Labbé, A.; Baudouin, C.; Goazigo, A.R.L. Corneal Nerve Abnormalities in Painful Dry Eye Disease Patients. Biomedicines 2021, 9, 1424. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, J.K.; Seo, K.Y.; Kim, E.K.; Lee, H.K. Comparison of corneal nerve regeneration and sensitivity between LASIK and laser epithelial keratomileusis (LASEK). Am. J. Ophthalmol. 2006, 141, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Moshirfar, M.; Bhavsar, U.M.; Durnford, K.M.; McCabe, S.E.; Ronquillo, Y.C.; Lewis, A.L.; Hoopes, P.C. Neuropathic corneal pain following LASIK surgery: A retrospective case series. Ophthalmol. Ther. 2021, 10, 677–689. [Google Scholar] [CrossRef]
- Theophanous, C.; Jacobs, D.S.; Hamrah, P. Corneal neuralgia after LASIK. Optom. Vis. Sci. 2015, 92, e233–e240. [Google Scholar] [CrossRef]
Clinical Test | Control (C) | Post-LASIK DED (D) | Post-LASIK DED-Pain (P) | ANOVA | Post-Hoc Comparisons | ||
---|---|---|---|---|---|---|---|
() | () | () | Global p-Value | C vs. D | C vs. P | D vs. P | |
Age | |||||||
OSDI | |||||||
NRS pain | |||||||
CFS | |||||||
TBUT | |||||||
CDVA |
Parameter | Control (C) | Post-LASIK DED (D) | Post-LASIK DED-Pain (P) | ANOVA | Post-Hoc Comparisons | ||
---|---|---|---|---|---|---|---|
() | () | () | Global p-Value | C vs. D | C vs. P | D vs. P | |
Total length | |||||||
Automated tortuosity () | |||||||
Subjective tortuosity () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, I.; Vázquez, A.; Calonge, M.; Maldonado, M.J.; de la Mata, A.; López-Miguel, A. New Method for the Automated Assessment of Corneal Nerve Tortuosity Using Confocal Microscopy Imaging. Appl. Sci. 2022, 12, 10450. https://doi.org/10.3390/app122010450
Fernández I, Vázquez A, Calonge M, Maldonado MJ, de la Mata A, López-Miguel A. New Method for the Automated Assessment of Corneal Nerve Tortuosity Using Confocal Microscopy Imaging. Applied Sciences. 2022; 12(20):10450. https://doi.org/10.3390/app122010450
Chicago/Turabian StyleFernández, Itziar, Amanda Vázquez, Margarita Calonge, Miguel J. Maldonado, Ana de la Mata, and Alberto López-Miguel. 2022. "New Method for the Automated Assessment of Corneal Nerve Tortuosity Using Confocal Microscopy Imaging" Applied Sciences 12, no. 20: 10450. https://doi.org/10.3390/app122010450