Improving Streaming Video with Deep Learning-Based Network Throughput Prediction
Abstract
:1. Introduction
2. Related Works
3. Theoretical Background
3.1. Video Streaming Model
3.2. Adaptation Strategies
3.3. Quality Measures
4. Prediction of Network Throughput
4.1. The Prediction Problem
4.2. Long Short-Term Memory Networks
4.2.1. Stacked Unidirectional LSTM
4.2.2. Stacked Bidirectional LSTM
4.3. Traffic Characteristics
4.4. Traffic Prediction with an LSTM ANN
4.5. Model Validation
4.6. Playback Algorithms Supported by Prediction
4.7. Discussion of the Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, X.K.; Erman, J.; Gopalakrishnan, V.; Halepovic, E.; Jana, R.; Jin, X.; Rexford, J.; Sinha, R.K. Can Accurate Predictions Improve Video Streaming in Cellular Networks? In Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, ACM, Santa Fe, NM, USA, 12–13 February 2015; pp. 57–62. [Google Scholar]
- Katris, C.; Daskalaki, S. Comparing forecasting approaches for Internet traffic. Expert Syst. Appl. 2015, 21, 8172–8183. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, J.Y. An Empirical Study of Throughput Prediction in Mobile Data Networks. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE 2018, 13, e0194889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, T.P.; Barbar, J.S.; Soares, A.S. Computer network traffic prediction: A comparison between traditional and deep learning neural networks. Int. J. Big Data Intell. 2016, 3, 28–37. [Google Scholar] [CrossRef]
- Dalgkitsis, A.; Louta, M.; Karetsos, G.T. Traffic forecasting in cellular networks using the lstm rnn. In Proceedings of the 22nd Pan-Hellenic Conference on Informatics, Athens, Greece, 29 November–1 December 2018; pp. 28–33. [Google Scholar]
- Zhuo, Q.; Li, Q.; Yan, H.; Qi, Y. Long short-term memory neural network for network traffic prediction. In Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Alsaade, F.W.; Hmoud Al-Adhaileh, M. Cellular Traffic Prediction Based on an Intelligent Model. Mob. Inf. Syst. 2021, 2021, 6050627. [Google Scholar] [CrossRef]
- He, Q.; Moayyedi, A.; Dan, G.; Koudouridis, G.P.; Tengkvist, P. A Meta-Learning Scheme for Adaptive Short-Term Network Traffic Prediction. IEEE J. Sel. Areas Commun. 2020, 38, 2271–2283. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar] [CrossRef]
- Cao, S.; Liu, W. LSTM Network Based Traffic Flow Prediction for Cellular Networks. In Simulation Tools and Techniques; Song, H., Jiang, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 295, pp. 643–653. [Google Scholar] [CrossRef]
- Trinh, H.D.; Giupponi, L.; Dini, P. Mobile traffic prediction from raw data using LSTM networks. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1827–1832. [Google Scholar]
- Labonne, M.; López, J.; Poletti, C.; Munier, J.B. Short-Term Flow-Based Bandwidth Forecasting using Machine Learning. arXiv 2020, arXiv:2011.14421. [Google Scholar]
- Azari, A.; Papapetrou, P.; Denic, S.; Peters, G. Cellular traffic prediction and classification: A comparative evaluation of LSTM and ARIMA. In Proceedings of the International Conference on Discovery Science, Split, Croatia, 28–30 October 2019; pp. 129–144. [Google Scholar]
- Yue, C.; Jin, R.; Suh, K.; Qin, Y.; Wang, B.; Wei, W. LinkForecast: Cellular Link Bandwidth Prediction in LTE Networks. IEEE Trans. Mob. Comput. 2018, 17, 1582–1594. [Google Scholar] [CrossRef]
- He, Q.; Koudouridis, G.P.; Dán, G. A comparison of machine and statistical time series learning for encrypted traffic prediction. In Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 17–20 February 2020; pp. 714–718. [Google Scholar]
- Bentaleb, A.; Timmerer, C.; Begen, A.C.; Zimmermann, R. Performance Analysis of ACTE: A Bandwidth Prediction Method for Low-latency Chunked Streaming. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–24. [Google Scholar] [CrossRef]
- Raca, D.; Zahran, A.H.; Sreenan, C.J.; Sinha, R.K.; Halepovic, E.; Jana, R.; Gopalakrishnan, V. On Leveraging Machine and Deep Learning for Throughput Prediction in Cellular Networks: Design, Performance, and Challenges. IEEE Commun. Mag. 2020, 58, 11–17. [Google Scholar] [CrossRef]
- Santos, C.E.M.; da Silva, C.A.G.; Pedroso, C.M. Improving Perceived Quality of Live Adaptative Video Streaming. Entropy 2021, 23, 948. [Google Scholar] [CrossRef] [PubMed]
- Biernacki, A. Traffic prediction methods for quality improvement of adaptive video. Multimed. Syst. 2018, 24, 531–547. [Google Scholar] [CrossRef] [Green Version]
- Zambelli, A. IIS Smooth Streaming Technical Overview; Microsoft Corporation: Albuquerque, NM, USA, 2009. [Google Scholar]
- ExoPlayer. 2022. Available online: https://github.com/google/ExoPlayer (accessed on 5 October 2022).
- Tian, G.; Liu, Y. Towards Agile and Smooth Video Adaptation in HTTP Adaptive Streaming. IEEE/ACM Trans. Netw. 2016, 24, 2386–2399. [Google Scholar] [CrossRef]
- (DASH-IF). JavaScript Reference Client. 2022. Available online: https://reference.dashif.org/dash.js/ (accessed on 5 October 2022).
- Famaey, J.; Latré, S.; Bouten, N.; Van de Meerssche, W.; De Vleeschauwer, B.; Van Leekwijck, W.; De Turck, F. On the merits of SVC-based HTTP adaptive streaming. In Proceedings of the Integrated Network Management (IM 2013), Ghent, Belgium, 27–31 May 2013; pp. 419–426. [Google Scholar]
- Belda, R.; de Fez, I.; Arce, P.; Guerri, J.C. Look ahead to improve QoE in DASH streaming. Multimed. Tools Appl. 2020, 79, 25143–25170. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, X.; Gahm, J.; Pan, R.; Hu, H.; Begen, A.C.; Oran, D. Probe and adapt: Rate adaptation for http video streaming at scale. IEEE J. Sel. Areas Commun. 2014, 32, 719–733. [Google Scholar] [CrossRef] [Green Version]
- Bentaleb, A.; Taani, B.; Begen, A.C.; Timmerer, C.; Zimmermann, R. A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP. IEEE Commun. Surv. Tutorials 2019, 21, 562–585. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Raca, D.; Quinlan, J.J.; Zahran, A.H.; Sreenan, C.J. Beyond throughput: A 4G LTE dataset with channel and context metrics. In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12–15 June 2018; pp. 460–465. [Google Scholar] [CrossRef]
- Raca, D.; Leahy, D.; Sreenan, C.J.; Quinlan, J.J. Beyond throughput, the next generation: A 5G dataset with channel and context metrics. In Proceedings of the 11th ACM Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 303–308. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Zabrovskiy, A.; Feldmann, C.; Timmerer, C. Multi-codec DASH dataset. In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12–15 June 2018; pp. 438–443. [Google Scholar] [CrossRef]
- Kim, M. Network traffic prediction based on INGARCH model. Wirel. Netw. 2020, 26, 6189–6202. [Google Scholar] [CrossRef]
- Raca, D.; Zahran, A.H.; Sreenan, C.J.; Sinha, R.K.; Halepovic, E.; Jana, R.; Gopalakrishnan, V.; Bathula, B.; Varvello, M. Incorporating Prediction into Adaptive Streaming Algorithms: A QoE Perspective. In Proceedings of the 28th ACM SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video, Amsterdam, The Netherlands, 12–15 June 2018; pp. 49–54. [Google Scholar] [CrossRef]
- De Cicco, L.; Caldaralo, V.; Palmisano, V.; Mascolo, S. ELASTIC: A client-side controller for dynamic adaptive streaming over HTTP (DASH). In Proceedings of the 2013 20th International Packet Video Workshop, San Jose, CA, USA, 12–13 December 2013; pp. 1–8. [Google Scholar]
- Zahran, A.H.; Raca, D.; Sreenan, C.J. Arbiter+: Adaptive rate-based intelligent http streaming algorithm for mobile networks. IEEE Trans. Mob. Comput. 2018, 17, 2716–2728. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biernacki, A. Improving Streaming Video with Deep Learning-Based Network Throughput Prediction. Appl. Sci. 2022, 12, 10274. https://doi.org/10.3390/app122010274
Biernacki A. Improving Streaming Video with Deep Learning-Based Network Throughput Prediction. Applied Sciences. 2022; 12(20):10274. https://doi.org/10.3390/app122010274
Chicago/Turabian StyleBiernacki, Arkadiusz. 2022. "Improving Streaming Video with Deep Learning-Based Network Throughput Prediction" Applied Sciences 12, no. 20: 10274. https://doi.org/10.3390/app122010274
APA StyleBiernacki, A. (2022). Improving Streaming Video with Deep Learning-Based Network Throughput Prediction. Applied Sciences, 12(20), 10274. https://doi.org/10.3390/app122010274