A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer
Abstract
:1. Introduction
2. BDGIM-Based Phase-Smoothed Pseudorange Algorithm
2.1. BDGIM
2.2. Classical Phase-Smoothed Pseudorange Principle
2.3. Improved Phase-Smoothed Pseudorange Principle
3. Dataset and Processing Strategies for SF SPP Time Transfer
4. Results and Discussion
4.1. Evaluation of the BDGIM
4.2. Performance Evaluation of Phase-Smoothed Pseudorange SPP Time Transfer Based on BDGIM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyu, D.; Zeng, F.; Ouyang, X.; Zhang, H. Real-Time Clock Comparison and Monitoring with Multi-GNSS Precise Point Positioning: GPS, GLONASS and Galileo. Adv. Space Res. 2020, 65, 560–571. [Google Scholar] [CrossRef]
- Ge, Y.; Zhou, F.; Dai, P.; Qin, W.; Wang, S.; Yang, X. Precise Point Positioning Time Transfer with Multi-GNSS Single-Frequency Observations. Measurement 2019, 146, 628–642. [Google Scholar] [CrossRef]
- Allan, D.W.; Weiss, M.A. Accurate Time and Frequency Transfer during Common-View of a GPS Satellite. In Proceedings of the 34th Annual Symposium on Frequency Control, Philadelphia, PA, USA, 28–30 May 1980; pp. 334–346. [Google Scholar]
- Jiang, Z.; Petit, G. Combination of TWSTFT and GNSS for Accurate UTC Time Transfer. Metrologia 2009, 46, 305–314. [Google Scholar] [CrossRef]
- Petit, G.; Jiang, Z. GPS All in View Time Transfer for TAI Computation. Metrologia 2008, 42, 35–42. [Google Scholar] [CrossRef]
- Levine, J. A Review of Time and Frequency Transfer Methods. Metrologia 2008, 45, S162–S174. [Google Scholar] [CrossRef]
- Petit, G.; Jiang, Z. Precise Point Positioning for TAI Computation. In Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May–1 June 2007; pp. 395–398. [Google Scholar]
- Defraigne, P.; Petit, G. CGGTTS-Version 2E: An Extended Standard for GNSS Time Transfer. Metrologia 2015, 52, G1. [Google Scholar] [CrossRef] [Green Version]
- Pei, W.; Chaozhong, Y.; Xuhai, Y.; Fen, C.; Zhenyuan, H.; Zhigang, L.; Ji, G.; Xiaohui, L.; Weijin, Q. Common-View Time Transfer Using Geostationary Satellite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1938–1945. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Yu, B.; Sheng, C.; Gan, X. Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances. Sensors 2020, 20, 2290. [Google Scholar] [CrossRef] [Green Version]
- Skakun, I.O.; Mitrikas, V.V. Comparison of Time Scales by the Common-View Method Using GLONASS Measurements and Taking into Account the Integer Property of Phase Ambiguities. Gyroscopy Navig. 2018, 9, 138–146. [Google Scholar] [CrossRef]
- Harmegnies, A.; Defraigne, P.; Petit, G. Combining GPS and GLONASS in All-in-View for Time Transfer. Metrologia 2013, 50, 277–287. [Google Scholar] [CrossRef]
- Wang, W.; Dong, S.; Wu, W.; Guo, D.; Wang, X.; Song, H. Combining TWSTFT and GPS PPP Using a Kalman Filter. GPS Solut. 2021, 25, 138. [Google Scholar] [CrossRef]
- Zhang, S.; Parker, T.; Zhang, V. Doppler Sensitivity and Its Effect on Transatlantic TWSTFT Links. Metrologia 2017, 54, 51–58. [Google Scholar] [CrossRef]
- Jiang, Z.; Dach, R.; Petit, G.; Schildknecht, T.; Hugentobler, U. Comparison and Combination of TAI Time Links with Continuous GPS Carrier Phase Results. In Proceedings of the 20th European Frequency and Time Forum, Braunschweig, Germany, 27–30 March 2006. [Google Scholar]
- Chen, C.; Chang, G.; Luo, F.; Zhang, S. Dual-Frequency Carrier Smoothed Code Filtering with Dynamical Ionospheric Delay Modeling. Adv. Space Res. 2019, 63, 857–870. [Google Scholar] [CrossRef]
- Tang, W.; Cui, J.; Hui, M.; Deng, C. Performance Analysis for BDS Phase-Smoothed Pseudorange Differential Positioning. J. Navig. 2016, 69, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Li, S. BDS Triple-Frequency Carrier Phase Combination Smoothing Pseudo-Range Algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2020, 780, 032044. [Google Scholar] [CrossRef]
- Zhao, K.; Yan, W.; Yang, X.; Yang, H.; Wei, P. BDGIM Performance Evaluation Based on IGMAS Global Tracking Network. Adv. Space Res. 2020, 66, 2168–2178. [Google Scholar] [CrossRef]
- Zhu, Y.; Tan, S.; Zhang, Q.; Ren, X.; Jia, X. Accuracy Evaluation of the Latest BDGIM for BDS-3 Satellites. Adv. Space Res. 2019, 64, 1217–1224. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Y.; Sun, B. Basic Performance and Future Developments of BeiDou Global Navigation Satellite System. Satell. Navig. 2020, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Hatch, R. The Synergism of GPS Code and Carrier Measurements. In Proceedings of the International Geodetic Symposium on Satellite Doppler Positioning, Las Cruces, NM, USA, 8–12 February 1982; pp. 1213–1231. [Google Scholar]
- Kouba, J.; Héroux, P. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Tu, R.; Zhang, P.; Zhang, R.; Liu, J.; Lu, X. Modeling and Performance Analysis of Precise Time Transfer Based on BDS Triple-Frequency Un-Combined Observations. J. Geod. 2019, 93, 837–847. [Google Scholar] [CrossRef]
- Geng, J.; Jiang, E.; Li, G.; Xin, S.; Wei, N. An Improved Hatch Filter Algorithm towards Sub-Meter Positioning Using Only Android Raw GNSS Measurements without External Augmentation Corrections. Remote Sens. 2019, 11, 1679. [Google Scholar] [CrossRef] [Green Version]
- Gerard, P.; Brian, L. IERS Conventions (2010); BIPM: Sèvres, France, 2010; p. 180. [Google Scholar]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A New Empirical Mapping Function Based on Numerical Weather Model Data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Pajares, M.; Roma-Dollase, D.; Krankowski, A.; García-Rigo, A.; Orús-Pérez, R. Methodology and Consistency of Slant and Vertical Assessments for Ionospheric Electron Content Models. J. Geod. 2017, 91, 1405–1414. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of Seven Different GNSS Global Ionospheric Mapping Techniques during One Solar Cycle. J. Geod. 2018, 92, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Wang, N.; Li, Z.; Huo, X. The BeiDou Global Broadcast Ionospheric Delay Correction Model (BDGIM) and Its Preliminary Performance Evaluation Results. Navigation 2019, 66, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ge, Y.; Meng, X.; Shen, P.; Wang, K.; Ke, F. Modelling and Assessment of Single-Frequency PPP Time Transfer with BDS-3 B1I and B1C Observations. Remote Sens. 2022, 14, 1146. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Yu, H.; Cao, X.; Ge, Y. A New Weighting Approach with Application to Ionospheric Delay Constraint for GPS/GALILEO Real-Time Precise Point Positioning. Appl. Sci. 2018, 8, 2537. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Ding, S.; Qin, W.; Zhou, F.; Yang, X.; Wang, S. Performance of Ionospheric-Free PPP Time Transfer Models with BDS-3 Quad-Frequency Observations. Measurement 2020, 160, 107836. [Google Scholar] [CrossRef]
- Allan, D.W. Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1987, 34, 647–654. [Google Scholar] [CrossRef]
Station | Receiver | Antenna | Clock |
---|---|---|---|
BRUX | SEPT POLARX5TR | JAVRINGANT_DM | IMASER 3000 |
HOB2 | SEPT POLARX5 | LEIAR25.R4 | H-MASER |
USUD | SEPT POLARX5 | AOAD/M_T | H-MASER |
STR1 | SEPT POLARX5 | ASH701945C_M | CESIUM |
LCK3 | TRIMBLE ALLOY | LEIAR25.R3 | H-MASER |
CUSV | JAVAD TRE_3 DELTA | JAVRINGANT_DM | INTERNAL |
Item | Strategy |
---|---|
Observations | BDS-3 B1I |
Cut-off elevation | 10° |
Sampling rate | 30 s |
Relativistic effect | Model corrected [26] |
Sagnac effect | Model corrected [26] |
Tropospheric delay | Hydrostatic delay: saas model [27] Wet delay: estimated+GMF [28] mapping function |
PCO | igs14.atx |
Tidal effect | Model corrected [26] |
Observation weight | |
Filter | Weighted least squares |
Receiver clock | Estimated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Lyu, D.; Zeng, F. A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer. Appl. Sci. 2022, 12, 10246. https://doi.org/10.3390/app122010246
Tang J, Lyu D, Zeng F. A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer. Applied Sciences. 2022; 12(20):10246. https://doi.org/10.3390/app122010246
Chicago/Turabian StyleTang, Jian, Daqian Lyu, and Fangling Zeng. 2022. "A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer" Applied Sciences 12, no. 20: 10246. https://doi.org/10.3390/app122010246
APA StyleTang, J., Lyu, D., & Zeng, F. (2022). A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer. Applied Sciences, 12(20), 10246. https://doi.org/10.3390/app122010246