The Association of Preoperative Depression, and C-Reactive Protein Levels with a Postoperative Length of Stay in Patients Undergoing Coronary Artery Bypass Grafting
Abstract
:1. Introduction
2. Patients, Materials, and Methods
2.1. Patients
2.2. Materials and Methods
2.2.1. Predictors
Assessment of Depressive Symptoms
Baseline and Postoperative C-Reactive Protein Levels
2.2.2. Outcome: Length of Stay Measure
2.2.3. Covariates: Demographic and Clinical Measures
2.3. Statistical Analysis
3. Results
3.1. Patient Demographic and Clinical Data
3.2. The Association between Depression Symptoms, and CRP with the Length of Postoperative Hospital Stay
3.3. The Impact of Depression on the Baseline and Postoperative CRP Levels
3.4. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- Diodato, M.; Chedrawy, E.G. Coronary artery bypass graft surgery: The past, present, and future of myocardial revascularization. Surg Res. Pract. 2014, 2014, 726158. [Google Scholar] [CrossRef] [PubMed]
- Hajar, R. Risk factors for coronary artery disease: Historical perspectives. Heart Views 2017, 18, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Khawaja, I.S.; Westermeyer, J.J.; Gajwani, P.; Feinstein, R.E. Depression and coronary artery disease: The association, mechanisms, and therapeutic implications. Psychiatry 2009, 6, 38–51. [Google Scholar] [PubMed]
- Serrano, C.V., Jr.; Setani, K.T.; Andrei, A.M.; Fraguas, R. Association between depression and development of coronary artery disease: Pathophysiologic and diagnostic implications. Vasc. Health Risk Manag. 2011, 7, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parissis, J.T.; Fountoulaki, K.; Filippatos, G.; Adamopoulos, S.; Paraskevaidis, I.; Kremastinos, D. Depression in coronary artery disease: Novel pathophysiologic mechanisms and therapeutic implications. Int. J. Cardiol. 2007, 116, 153–160. [Google Scholar] [CrossRef]
- Celano, C.M.; Huffman, J.C. Depression and cardiac disease: A review. Cardiol. Rev. 2011, 19, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Rudisch, B.; Nemeroff, C.B. Epidemiology of comorbid coronary artery disease and depression. Biol. Psychiatry 2003, 54, 227–240. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; Abu Ejheisheh, M.; Suleiman-Martos, N.; Membrive-Jiménez, M.J.; Velando-Soriano, A.; Schmidt-RioValle, J.; Gómez-Urquiza, J.L. Prevalence of Depression in Coronary Artery Bypass Surgery: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 909. [Google Scholar] [CrossRef]
- Stenman, M.; Holzmann, M.J.; Sartipy, U. Association between preoperative depression and long-term survival following coronary artery bypass surgery—A systematic review and meta-analysis. Int. J. Cardiol. 2016, 222, 462–466. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Kollia, N.; Tousoulis, D. The link between depression and atherosclerosis through the pathways of inflammation and endothelium dysfunction. Maturitas 2018, 109, 1–5. [Google Scholar] [CrossRef]
- Baghai, T.C.; Varallo-Bedarida, G.; Born, C.; Häfner, S.; Schüle, C.; Eser, D.; Rupprecht, R. Classical Risk Factors and Inflammatory Biomarkers: One of the Missing Biological Links between Cardiovascular Disease and Major Depressive Disorder. Int. J. Mol. Sci. 2018, 19, 1740. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.; Puri, B.K.; Olive, L.; Carvalho, A.; Berk, M.; Walder, K.; Gustad, L.T.; Maes, M. Endothelial dysfunction in neuroprogressive disorders—Causes and suggested treatments. BMC Med. 2020, 18, 305. [Google Scholar] [CrossRef]
- Ain, Q.U.; Sarfraz, M.; Prasesti, G.K.; Dewi, T.I.; Kurniati, N.F. Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules 2021, 11, 1464. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Tsetsekou, E.; Papageorgiou, C.; Christodoulou, G.; Stefanadis, C. Inflammation, coagulation, and depressive symptomatology in cardio-vascular disease-free people; the ATTICA study. Eur. Heart J. 2004, 25, 492–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fioranelli, M.; Bottaccioli, A.G.; Bottaccioli, F.; Bianchi, M.; Rovesti, M.; Roccia, M.G. Stress and Inflammation in Coronary Artery Disease: A Review Psychoneuroendocrineimmunology-Based. Front Immunol. 2018, 9, 2031. [Google Scholar] [CrossRef]
- Chávez-Castillo, M.; Nava, M.; Ortega, Á.; Rojas, M.; Núñez, V.; Salazar, J.; Rojas-Quintero, J. Depression as an Immunometabolic Disorder: Exploring Shared Pharma-cotherapeutics with Cardiovascular Disease. Curr. Neuropharmacol. 2020, 18, 1138–1153. [Google Scholar] [CrossRef]
- Strawbridge, R.; Arnone, D.; Danese, A.; Papadopoulos, A.; Vives, A.H.; Cleare, A.J. Inflammation and clinical response to treatment in depression: A meta-analysis. Eur. Neuropsychopharmacol. 2015, 25, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Bin Wei, Y.; Strawbridge, R.; Bao, Y.; Chang, S.; Shi, L.; Que, J.; Gadad, B.S.; Trivedi, M.H.; Kelsoe, J.R.; et al. Peripheral cytokine levels and response to antidepressant treatment in depression: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; De Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Köhler, C.A.; Freitas, T.H.; Stubbs, B.; Maes, M.; Solmi, M.; Veronese, N.; De Andrade, N.Q.; Morris, G.; Fernandes, B.; Brunoni, A.R.; et al. Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Mol. Neurobiol. 2018, 55, 4195–4206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, S.F.; Watkins, L.R. Cytokines for psychologists: Implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol. Rev. 1998, 105, 83–107. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Schott, L.L.; Bromberger, J.T.; Cyranowski, J.M.; Everson-Rose, S.A.; Sowers, M. Are there bi-directional associations between depressive symptoms and C-reactive protein in mid-life women? Brain Behav. Immun. 2010, 24, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Shimbo, D.; Chaplin, W.; Crossman, D.; Haas, D.; Davidson, K.W. Role of Depression and Inflammation in Incident Coronary Heart Disease Events. Am. J. Cardiol. 2005, 96, 1016–1021. [Google Scholar] [CrossRef]
- Stewart, J.C.; Rand, K.L.; Muldoon, M.F.; Kamarck, T.W. A prospective evaluation of the directionality of the depression-inflammation relationship. Brain Behav. Immun. 2009, 23, 936–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimeno, D.; Kivimaki, M.; Brunner, E.; Elovainio, M.; De Vogli, R.; Steptoe, A.; Kumari, M.; Lowe, G.D.; Rumley, A.; Marmot, M.; et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol. Med. 2009, 39, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Duivis, H.E.; De Jonge, P.; Penninx, B.W.; Na, B.Y.; Cohen, B.E.; Whooley, M.A. Depressive Symptoms, Health Behaviors, and Subsequent Inflammation in Patients with Coronary Heart Disease: Prospective Findings from the Heart and Soul Study. Am. J. Psychiatry 2011, 168, 913–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sforzini, L.; Pariante, C.M.; Palacios, J.E.; Tylee, A.; Carvalho, L.A.; Viganò, C.A.; Nikkheslat, N. Inflammation associated with coronary heart disease predicts onset of depression in a three-year prospective follow-up: A preliminary study. Brain Behav. Immun. 2019, 81, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.F.; LeDue, T.B.; Winyard, P.G.; Willoughby, D.A. Laboratory Assessment of the Acute Phase Response Using CRP as a Model. Methods Mol Biol. 2003, 225, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Moutachakkir, M.; Baraou, A.; Boukhira, A.; Chellak, S. Immunoanalytical characteristics of C-reactive protein and high sensitivity C-reactive protein. Ann. Biol. Clin. 2017, 75, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Santonocito, C.; De Loecker, I.; Donadello, K.; Moussa, M.D.; Markowicz, S.; Gullo, A.; Vincent, J.-L. C-Reactive Protein Kinetics after Major Surgery. Anesth. Analg. 2014, 119, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Wium-Andersen, M.K.; Ørsted, D.D.; Nielsen, S.F.; Nordestgaard, B.G. Elevated C-reactive protein levels, psychological distress, and depression in 73, 131 individuals. JAMA Psychiatry 2013, 70, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, G.M.; Pearson, R.M.; Zammit, S.; Lewis, G.; Jones, P.B. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: A population-based longitudinal study. JAMA Psychiatry 2014, 71, 1121–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalli, A.; Jovanova, O.; Hoogendijk, W.J.G.; Tiemeier, H.; de Carvalho, L.A. Low-grade inflammation predicts persistence of depressive symptoms. Psychopharmacology 2016, 233, 1669–1678. [Google Scholar] [CrossRef] [Green Version]
- Khandaker, G.M.; Zuber, V.; Rees, J.; Carvalho, L.; Mason, A.M.; Foley, C.N.; Burgess, S. Shared mechanisms between coronary heart disease and depression: Findings from a large UK general population-based cohort. Mol. Psychiatry 2020, 25, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Abolhasani, S.; Shahbazloo, S.V.; Saadati, H.M.; Mahmoodi, N.; Khanbabaei, N. Evaluation of Serum Levels of Inflammation, Fibrinolysis and Oxidative Stress Markers in Coronary Artery Disease Prediction: A Cross-Sectional Study. Arq. Bras. Cardiol. 2019, 113, 667–674. [Google Scholar] [CrossRef]
- Danesh, J.; Wheeler, J.G.; Hirschfield, G.M.; Eda, S.; Eiriksdottir, G.; Rumley, A.; Lowe, G.D.; Pepys, M.B.; Gudnason, V. C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. N. Engl. J. Med. 2004, 350, 1387–1397. [Google Scholar] [CrossRef]
- Van Wijk, D.F.; Boekholdt, S.M.; Wareham, N.J.; Ahmadi-Abhari, S.; Kastelein, J.J.; Stroes, E.S.; Khaw, K.T. C-reactive protein, fatal and nonfatal coronary artery disease, stroke, and peripheral artery disease in the prospective EPIC-Norfolk cohort study. Arterioscler. Thromb. Vasc. Biology. 2013, 33, 2888–2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zhang, D.; Zhao, Y.; Liu, D.; Li, Q.; Guo, C.; Tian, G.; Han, M.; Qie, R.; Huang, S.; et al. Association between serum level of C-reactive protein and risk of cardiovascular events based on cohort studies. J. Hum. Hypertens. 2021, 35, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Strang, F.; Schunkert, H. C-reactive protein and coronary heart disease: All said—Is not it? Mediators Inflamm. 2014, 2014, 757123. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Wu, Y.; Liu, E. C-reactive protein and cardiovascular disease: From animal studies to the clinic (Review). Exp. Ther. Med. 2020, 20, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- AbuRuz, M.E.; Momani, A.; Shajrawi, A. The Association Between Depressive Symptoms and Length of Hospital Stay Following Coronary Artery Bypass Graft is Moderated by Perceived Control. Risk Manag. Health Policy 2021, 14, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- AbuRuz, M.E. Pre-operative depression predicted longer hospital length of stay among patients undergoing coronary artery bypass graft surgery. Risk Manag. Healthc. Policy 2019, 12, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Oxlad, M.; Stubberfield, J.; Stuklis, R.; Edwards, J.; Wade, T.D. Psychological Risk Factors for Increased Post-Operative Length of Hospital Stay Following Coronary Artery Bypass Graft Surgery. J. Behav. Med. 2006, 29, 179–190. [Google Scholar] [CrossRef]
- Poole, L.; Kidd, T.; Leigh, E.; Ronaldson, A.; Jahangiri, M.; Steptoe, A. Depression, C-reactive protein and length of post-operative hospital stay in coronary artery bypass graft surgery patients. Brain Behav. Immun. 2014, 37, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, L.; Leigh, E.; Kidd, T.; Ronaldson, A.; Jahangiri, M.; Steptoe, A. The combined association of depression and socioeconomic status with length of post-operative hospital stay following coronary artery bypass graft surgery: Data from a prospective cohort study. J. Psychosom. Res. 2014, 76, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, J.; Zhang, L.; Hou, J.; Yuan, X.; Hu, S.; Zheng, Z. Preoperative high-sensitivity C-reactive protein predicts depression in patients undergoing coronary artery bypass surgery: A single-center prospective observational study. J. Thorac. Cardiovasc. Surg. 2012, 144, 500–505. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Ball, R.; Ranieri, W.F. Comparison of Beck Depression Inventories-IA and-II in Psychiatric Outpatients. J. Pers. Assess. 1996, 67, 588–597. [Google Scholar] [CrossRef]
- Jakšić, N.; Ivezić, E.; Jokić-Begić, N.; Surányi, Z.; Stojanović-Špehar, S. Factorial and Diagnostic Validity of the Beck Depression Inventory-II (BDI-II) in Croatian Primary Health Care. J. Clin. Psychol. Med. Settings 2013, 20, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Galai, N.; Israeli, A.; Zitser-Gurevich, Y.; Simchen, E. Is discharge policy a balanced decision between clinical considerations and hospital ownership policy? The CABG example. J. Thorac. Cardiovasc. Surg. 2003, 126, 1018–1025. [Google Scholar] [CrossRef] [Green Version]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012, 41, 734–744; discussion 44–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Preacher, K.J.; Hayes, A.F. Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Abu-Bader, S.; Jones, T.V. Statistical mediation analysis using the sobel test and hayes SPSS process macro. Int. J. Quant. Qual. Res. Methods 2021, 9, 42–61. [Google Scholar]
- Hayes, A.F.; Rockwood, N.J. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation. Behav. Res. Ther. 2017, 98, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Kane, L.; Ashbaugh, A.R. (Eds.) Simple and parallel mediation: A tutorial exploring anxiety sensitivity, sensation seeking, and gender. Quant. Methods Psychol. 2017, 13, 148–165. [Google Scholar] [CrossRef]
- Stenman, M.; Holzmann, M.J.; Sartipy, U. Relation of Major Depression to Survival After Coronary Artery Bypass Grafting. Am. J. Cardiol. 2014, 114, 698–703. [Google Scholar] [CrossRef]
- Gegenava, T.; Gegenava, M.; Kavtaradze, G. C-reactive protein level correlation with depression and anxiety among patients with coronary artery disease. Georgian Med. News 2011, 194, 34–37. [Google Scholar]
- Perry, T.E.; Muehlschlegel, J.D.; Liu, K.Y.; Fox, A.A.; Collard, C.D.; Body, S.C. Preoperative C-reactive protein predicts long-term mortality and hospital length of stay after primary, nonemergent coronary artery bypass grafting. Anesthesiology 2010, 112, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, L.B.; Wood, T.; Cheng, A.; Khan, A.R. Pre-existing psychological depression confers increased risk of adverse cardiovascular outcomes following cardiac surgery: A systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 2017, 154, 1578–1586.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, S.H.; Kassaian, S.E.; Sadeghian, S.; Karimi, A.; Saadat, S.; Peyvandi, F.; Rosendaal, F. Factors Associated with Depressive Symptoms in Young Adults with Coronary Artery Disease: Tehran Heart Center’s Premature Coronary Atherosclerosis Cohort (THC-PAC) Study. Iran J. Psychiatry 2016, 11, 214–223. [Google Scholar] [PubMed]
- Messerotti Benvenuti, S.; Palomba, D.; Zanatta, P.; Mazzarolo, A.P.; Valfrè, C. Biomedical and psychological risk in cardiac surgery: Is EuroSCORE a more comprehensive risk measure than Stroke Index? Eur. J. Cardiothorac. Surg. 2011, 39, e102–e106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cromhout, P.F.; Berg, S.K.; Moons, P.; Damgaard, S.; Nashef, S.; Thygesen, L. Updating EuroSCORE by including emotional, behavioural, social and functional factors to the risk assessment of patients undergoing cardiac surgery: A study protocol. BMJ Open 2019, 9, e026745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-P.; Gorenstein, C. Assessment of depression in medical patients: A systematic review of the utility of the Beck Depression Inventory-II. Clinics 2013, 68, 1274–1287. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Age (years) | 61.6 ± 7.9 |
Gender (male) | 171 (80.7) |
Smoking (yes) | 32 (15.1) |
BMI (kg/m2) | 28.3 (25.8–30.7) |
Baseline medications | |
Beta-blockers | 179 (84.4) |
Acetylsalicylic acid | 187 (88.2) |
ACE inhibitors | 132 (62.3) |
Statins | 191 (90.1) |
Antidepressants | 2 (0.9) |
Medical history | |
Hypertension | 185 (87.3) |
Diabetes | 77 (36.3) |
Hyperlipidemia | 159 (75.0) |
Family history of cardiovascular diseases | 132 (62.3) |
Preoperative myocardial infarction (MI) | 110 (51.9) |
Clinical factors | |
Preoperative Hemoglobin (g/l) | 141.0 (131.0–152.0) |
Ejection Fraction (%) | 55.0 (45.0–60.0) |
EuroSCORE-II | 1.1 (0.7–2.0) |
Extubating time (ET) | 7.0 (5.0–10.0) |
On pump | 193 (91.0) |
Extracorporeal Circulation length | 79.5 (63.0–98.3) |
Number of grafts | 3.0 (2.0–3.0) |
Postoperative hospital LOS (days) | 8.0 (7.0–10.0) |
Binary postoperative hospital LOS values | |
≤7 days | 88 (41.5) |
>7 days | 124 (58.5) |
Intensive care unit LOS, days | 2.0 (2.0–3.0) |
Postoperative atrial fibrillation | 44 (20.8) |
Infection | 13 (6.1) |
Preoperative CRP | 2.3 (1.0–4.7) |
Early CRP Change score | 107.2 (86.8–146.9) |
Persistent CRP Change score | 68.5 (51.9–90.9) |
Depression symptoms | |
Total BDI-II scores | 8.0 (5.0–11.0) |
Binary BDI-II scores | |
None (≤13) | 186 (87.7) |
Mild to Severe (>13) | 26 (12.3) |
Characteristics | BDI-II ≤ 13 N = 186 | BDI-II > 13 N = 26 | p-Value |
---|---|---|---|
Age (years) | 61.6 ± 7.9 | 61.9 ± 8.7 | 0.850 |
Gender (male) | 154 (82.8) | 17 (65.4) | 0.059 |
Smoking (yes) | 24 (13.0) | 8 (30.8) | 0.026 |
BMI (kg/m2) | 28.2 (25.7–30.7) | 28.4 (25.6–31.8) | 0.672 |
Baseline medications | |||
Beta-blockers | 160 (86.5) | 19 (76.0) | 0.224 |
Acetylsalicylic acid | 165 (88.7) | 22 (84.6) | 0.521 |
AC inhibitors | 114 (61.3) | 18 (69.2) | 0.520 |
Statin medications | 169 (91.4) | 22 (88.0) | 0.480 |
Antidepressants | 2 (1.1) | 0 (0.0) | >0.999 |
Medical history | |||
Hypertension | 163 (87.6) | 22 (84.6) | 0.752 |
Diabetes | 63 (33.9) | 14 (53.8) | 0.053 |
Hyperlipidemia | 141 (75.8) | 18 (69.2) | 0.630 |
Family history of cardiovascular diseases | 118 (64.1) | 14 (53.8) | 0.386 |
Preoperative MI | 93 (50.0) | 17 (65.4) | 0.150 |
Clinical factors | |||
Preoperative Hemoglobin (g/l) | 142.0 (134.0–152.0) | 136.5 (120.3–153.5) | 0.044 |
Anemia | 25 (13.4) | 8 (30.8) | 0.038 |
Ejection Fraction (%) | 55.0 (45.0–60.0) | 50.0 (44.5–56.3) | 0.066 |
EuroSCORE-II | 0.99 (0.68–1.71) | 2.63 (1.9–5.22) | <0.001 * |
Extubating time (ET) | 7.0 (5.0–10.0) | 9.0 (6.75–12.25) | 0.029 |
On pump | 170 (91.4) | 23 (88.5) | 0.711 |
Extracorporeal Circulation length | 80.0 (63.0–99.0) | 76.0 (60.0–92.0) | 0.478 |
Number of grafts | 3.0 (2.0–3.0) | 3.0 (2.0–3.0) | 0.749 |
Postoperative hospital length of stay (days) | 8.0 (7.0–9.0) | 10.00 (7.00–11.25) | 0.025 |
Binary postoperative hospital length of stay values | 0.137 | ||
≤7 days | 81 (43.5) | 7 (26.9) | |
>7 days | 105 (56.5) | 19 (73.1) | |
Intensive care unit length of stay (days) | 3.0 (2.0–3.0) | 2.0 (2.0–3.0) | 0.175 |
Postoperative atrial fibrillation | 36 (19.4) | 8 (30.8) | 0.198 |
Infection | 12 (6.5) | 1 (3.8) | >0.999 |
Baseline CRP (mg/dL) | 2.1 (1.0–4.0) | 4.8 (1.6–8.3) | 0.007 |
Early CRP Change score | 103.7 (86.1–145.1) | 119.9 (96.0–150.8) | 0.212 |
Persistent CRP Change score | 68.1 (51.8–91.1) | 74.2 (52.1–88.4) | 0.834 |
Characteristics | Postoperative Hospital LOS ≤ 7 Days; N = 88 | Postoperative Hospital LOS > 7 Days; N = 124 | p-Value |
---|---|---|---|
Age (years) | 58.9 ± 7.8 | 63.5 ± 7.5 | <0.001 * |
Gender (male) | 76 (86.4) | 95 (76.6) | 0.081 |
Smoking | 21 (24.4) | 11 (8.9) | 0.003 |
BMI (kg/m2) | 28.1 (25.3–30.3) | 28.4 (26.0–31.1) | 0.460 |
Baseline medications | |||
Beta-blockers | 81 (92.0) | 98 (80.3) | 0.029 |
Acetylsalicylic acid | 82 (93.2) | 105 (84.7) | 0.083 |
AC inhibitors | 58 (65.9) | 74 (59.7) | 0.390 |
Statin medications | 80 (90.9) | 111 (91.0) | >0.999 |
Antidepressants | 1 (1.1) | 1 (0.8) | >0.999 |
Medical history | |||
Hypertension | 76 (86.4) | 109 (87.9) | 0.835 |
Diabetes | 23 (26.1) | 54 (43.5) | 0.013 |
Hyperlipidemia | 70 (79.5) | 89 (71.8) | 0.260 |
Family history of cardiovascular diseases | 54 (62.1) | 78 (63.4) | 0.885 |
Preoperative MI | 42 (47.7) | 68 (54.8) | 0.331 |
Clinical factors | |||
Preoperative Hemoglobin (g/l) | 146.5 (138.0–154.0) | 139.5 (127.4–151.0) | <0.001 * |
Anemia | 7 (8.0) | 26 (21.0) | 0.012 |
Ejection Fraction (%) | 55.0 (48.1–60.8) | 55.0 (45.0–60.0) | 0.325 |
EuroSCORE-II | 0.9 (0.7–1.3) | 1.33 (0.9–2.7) | <0.001 * |
Extubating time (ET) | 7.0 (5.0–9.0) | 8.0 (6.0–11.0) | 0.016 |
On pump | 81 (92.0) | 112 (90.3) | 0.809 |
Extracorporeal Circulation length | 78.0 (63.5–97.0) | 80.0 (63.0–100.0) | 0.763 |
Number of grafts | 3.0 (2.0–3.0) | 3.0 (2.0–3.0) | 0.400 |
Intensive care unit LOS, days | 2.0 (2.0–3.0) | 3.0 (2.0–3.0) | 0.022 |
Postoperative atrial fibrillation | 8 (9.1) | 36 (29.0) | <0.001 * |
Infection | 5 (5.7) | 8 (6.5) | >0.999 |
Preoperative CRP, (mg/dL) | 1.8 (1.0–3.4) | 2.5 (1.21–4.9) | 0.113 |
Early CRP Change score | 102.6 (83.5–139.9) | 109.3 (92.2–148.5) | 0.112 |
Persistent CRP Change score | 61.0 (48.0–78.9) | 77.9 (58.2–100.8) | <0.001 * |
Depression symptoms | |||
Total BDI-II scores | 7.0 (4.0–10.8) | 9.0 (6.0–12.0) | 0.014 |
Binary BDI-II values | 0.137 | ||
None (≤13) | 81 (92.0) | 105 (84.7) | |
Mild to Severe (>13) | 7 (8.0) | 19 (15.3) |
Binary Depression Score | OR | 95% CI | p-Value | |
---|---|---|---|---|
BDI-II scores | ||||
Model 1 (n = 212) | None (≤13) | (Reference) | - | - |
Mild to severe depression (>13) | 0.09 | 0.845.22 | 0.113 | |
Model2 (n = 212) | None (≤13) | (Reference) | - | - |
Mild to severe depression | 0.03 | 0.77–5.38 | 0.152 | |
Model 3 (n = 208) * | None (≤13) | (Reference) | - | - |
Mild to severe depression (>13) | 0.21 | 0.35–4.12 | 0.763 |
CRP Measurements | Model | OR | 95% CI | p-Value |
---|---|---|---|---|
Baseline CRP | Model 1 | 1.027 | 0.97–1.09 | 0.378 |
Model 2 | 1.043 | 0.98–1.11 | 0.192 | |
Model 3 | 1.007 | 0.94–1.08 | 0.854 | |
Early CRP Change (1–3 days follow-up) | Model 1 | 1.006 | 0.99–1.01 | 0.086 |
Model 2 | 1.009 | 1.00–1.02 | 0.018 | |
Model 3 | 1.005 | 0.99–1.01 | 0.219 | |
Persistent CRP Change (4–6 days follow up) | Model 1 | 1.020 | 1.01–1.03 | <0.001 * |
Model 2 | 1.024 | 1.01–1.04 | <0.001 * | |
Model 3 | 1.017 | 1.01–1.03 | 0.005 * |
B | SE | β | t | p-Value | |
---|---|---|---|---|---|
Smoking | −20.373 | 7.932 | −0.180 | −2.568 | 0.011 |
EuroSCORE II | −1.623 | 1.793 | −0.069 | −0.905 | 0.366 |
Preoperative hemoglobin levels | 0.540 | 0.189 | 0.205 | 2.851 | 0.005 * |
Extubation/ventilation time | 0.403 | 0.678 | 0.041 | 0.595 | 0.552 |
Postoperative AF | 18.007 | 7.138 | 0.179 | 2.523 | 0.012 |
β-blockers | −1.994 | 7.889 | −0.017 | −0.253 | 0.801 |
Preoperative CRP | 1.276 | 0.591 | 0.154 | 2.160 | 0.032 |
Infection | 7.868 | 11.347 | 0.047 | 0.693 | 0.489 |
BDI-II score | 0.531 | 0.530 | 0.072 | 1.001 | 0.318 |
B | SE | β | t | p-Value | |
---|---|---|---|---|---|
Smoking | −21.050 | 6.804 | −0.213 | −3.094 | 0.002 * |
EuroSCORE II | −0.085 | 1.538 | −0.004 | −0.055 | 0.956 |
Preoperative hemoglobin levels | −0.004 | 0.162 | −0.002 | −0.026 | 0.979 |
Extubation/ventilation time | 1.142 | 0.581 | 0.134 | 1.965 | 0.051 |
Postoperative AF | 13.986 | 6.123 | 0.159 | 2.284 | 0.023 |
β-blockers | −5.932 | 6.767 | −0.058 | −0.877 | 0.382 |
Preoperative CRP | −0.045 | 0.507 | −0.006 | −0.089 | 0.929 |
Infection | 32.242 | 9.733 | 0.219 | 3.313 | 0.001 * |
BDI-II score | 0.058 | 0.455 | 0.009 | 0.127 | 0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivankovic, S.; Coric, V.; Paic, F.; Mihaljevic Peles, A.; Svagusa, T.; Kalamar, V.; Petricevic, M.; Biocina, B. The Association of Preoperative Depression, and C-Reactive Protein Levels with a Postoperative Length of Stay in Patients Undergoing Coronary Artery Bypass Grafting. Appl. Sci. 2022, 12, 10201. https://doi.org/10.3390/app122010201
Ivankovic S, Coric V, Paic F, Mihaljevic Peles A, Svagusa T, Kalamar V, Petricevic M, Biocina B. The Association of Preoperative Depression, and C-Reactive Protein Levels with a Postoperative Length of Stay in Patients Undergoing Coronary Artery Bypass Grafting. Applied Sciences. 2022; 12(20):10201. https://doi.org/10.3390/app122010201
Chicago/Turabian StyleIvankovic, Stjepan, Vedran Coric, Frane Paic, Alma Mihaljevic Peles, Tomo Svagusa, Viktor Kalamar, Mate Petricevic, and Bojan Biocina. 2022. "The Association of Preoperative Depression, and C-Reactive Protein Levels with a Postoperative Length of Stay in Patients Undergoing Coronary Artery Bypass Grafting" Applied Sciences 12, no. 20: 10201. https://doi.org/10.3390/app122010201
APA StyleIvankovic, S., Coric, V., Paic, F., Mihaljevic Peles, A., Svagusa, T., Kalamar, V., Petricevic, M., & Biocina, B. (2022). The Association of Preoperative Depression, and C-Reactive Protein Levels with a Postoperative Length of Stay in Patients Undergoing Coronary Artery Bypass Grafting. Applied Sciences, 12(20), 10201. https://doi.org/10.3390/app122010201