Bioinspired NEMS—Prospective of Collaboration with Nature
Abstract
:1. Introduction
2. The Emergence of Bioinspired NEMS
3. Fabrication of Bioinspired NEMS
Fabrication of Bioinspired Nano-Structures
4. Bioinspired NEMS—The State of the Art
4.1. Hair-like Structures
4.2. BioMEMS: Medical Perspective
4.3. The Last Decade—an Age of Great Promise
5. Biomimetics Meets Photonics and Nanomechanics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Driessen-Mol, A. Biomimetics: A Molecular Perspective. Green Processing Synth. 2013, 2, 527. [Google Scholar] [CrossRef]
- Zheng, X.; Kamot, A.M.; Cao, M.; Kottapalli, A.G.P. Creating underwater vision through wavy whiskers: A review of the flow-sensing mechanisms and biomimetic potential of seal whiskers. J. R. Soc. Interface 2021, 18, 20210629. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Painer, J.; Johnson, R.J.; Natterson-Horowitz, B. Biomimetics—Nature’s roadmap to insights and solutions for burden of lifestyle diseases. Rev. Simp. 2020, 287, 238–251. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Pei, Y.; Zhang, C.; Kottapalli, A.G.P. Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy 2021, 84, 105865. [Google Scholar] [CrossRef]
- Jakšić, Z.; Jakšić, O. Biomimetic nanomembranes: An overview. Biomimetics 2020, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, L.; Qi, L.; Guo, R.; Li, K.; Yin, Z.; Wu, D.; Zou, H. A low-cost fabrication method of nanostructures by ultraviolet proximity exposing lithography. AIP Adv. 2020, 10, 045221. [Google Scholar] [CrossRef]
- Duda, T.; Raghavan, L.V. 3D Metal Printing Technology. IFAC-PapersOnLine 2016, 49, 103–110. [Google Scholar] [CrossRef]
- Chen, Y.P.; Yang, M.D. Micro-Scale Manufacture of 3D Printing. Appl. Mech. Mater. 2014, 670, 936–941. [Google Scholar] [CrossRef]
- Kumar, C.; Le Houerou, V.; Speck, T.; Bohn, H.F. Straightforward and precise approach to replicate complex hierarchical structures from plant surfaces onto soft matter polymer. R. Soc. Open Sci. 2018, 5, 172132. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Zhang, K.; Esteve, D.; Alphonse, P.; Tailhades, P.; Vahlas, C. Nanoenergetic materials for MEMS: A review. J. Microelectromech. Syst. 2007, 16, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zeng, H.; Priimagi, A.; Ikkala, O. Pavlovian materials—Functional biomimetics inspired by classical conditioning. Adv. Mater. 2020, 32, 1906619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Naleway, S.E.; Wang, B. Biological and bioinspired materials: Structure leading to functional and mechanical performance. Bioact. Mater. 2020, 5, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Shanker, R.; Sardar, S.; Chen, S.; Gamage, S.; Rossi, S.; Jonsson, M.P. Noniridescent biomimetic photonic microdoms by inkjet printing. Nano Lett. 2020, 20, 7243–7250. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Wu, J.; Jiang, C.; Shen, J.; Cooper, M.A.; Wu, D. Biomimetic moth-eye nanofabrication: Enhanced antireflection with superior self-cleaning characteristic. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114–3116. [Google Scholar] [CrossRef] [Green Version]
- Seale, M.; Cummins, C.; Viola, I.M.; Mastropaolo, E.; Nakayama, N. Design principles of hair-like structures as biological machines. J. R. Soc. Interface 2018, 15, 20180206. [Google Scholar] [CrossRef] [Green Version]
- Droogendijk, H.; De Boer, M.J.; Sanders, R.G.P.; Krijnen, G.J.M. A biomimetic accelerometer inspired by the cricket’s calvate hair. J. R. Soc. Interface 2014, 11, 20140438. [Google Scholar] [CrossRef]
- Sakaguchi, D.S.; Murphy, R.K. The equilibrium detecting system of the cricket: Physiology and morphology of an identified interneuron. J. Comp. Physiol. 1983, 150, 141–152. [Google Scholar] [CrossRef]
- Droogendijk, H.; Brookhuis, R.A.; De Boer, M.J.; Sanders, R.G.P.; Krijnen, G.J.M. Towards a biomimetic gyroscope inspired by the fly’s haltere using microelectromechanical systems technology. J. R. Soc. Interface 2014, 11, 20140573. [Google Scholar] [CrossRef] [Green Version]
- Asadnia, M.; Kottapalli, A.G.P.; Miao, J.; Warkiani, M.E.; Triantafyllou, M.S. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena. J. R. Soc. Interface 2015, 12, 20150322. [Google Scholar] [CrossRef] [Green Version]
- Folch, A. Introduction to bioMEMS; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Scuor, N.; Gallina, P.; Panchawagh, H.V.; Mahajan, R.L.; Sbaizero, O.; Sergo, V. Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed. Microdevices 2006, 8, 239–246. [Google Scholar] [CrossRef]
- Wang, G.J.; Chen, C.L.; Hsu, S.H.; Chiang, Y.L. Bio-MEMS fabricated artificial capillaries for tissue engineering. Microsyst. Technol. 2005, 12, 120–127. [Google Scholar] [CrossRef]
- Tsuda, S.; Zauner, K.P.; Gunji, Y.P. Robot control with biological cells. Biosystems 2007, 87, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Hawkes, E.; Choy, K.; Joldaz, M.; Foleyz, J.; Wood, R. Micro Artificial Muscle Fiber Using NiTi Spring for Soft Robotics. In Proceedings of the International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2228–2234. [Google Scholar]
- Nosonovsky, M.; Rohatgi, P.K. Biomimetics in Materials Science: Self-Healing, Self-Lubricating, and Self-Cleaning Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 152. [Google Scholar]
- Zhang, D. Morphology Genetic Materials Templated from Nature Species; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- You, Z.; Pearce, D.J.G.; Sengupta, A.; Giomi, L. Geometry and mechanics of microdomains in growing bacterial colonies. Phys. Rev. X 2018, 8, 031065. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.; Ardekani, A.M. Combined influence of hydrodynamics and chemotaxis in the distribution of microorganisms around spherical nutrient sources. Phys. Rev. E 2018, 98, 012419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthick, S.; Sen, A.K. Improved understanding of acoustophoresis and development of an acoustofluidic device for blood plasma separation. Phys. Rev. Appl. 2018, 10, 034–037. [Google Scholar] [CrossRef]
- Zhang, J.M.; Ji, Q.; Liu, Y.; Huang, J.; Duan, H. An integrated micro-milli fluidic processing system. Lab Chip 2018, 18, 3393–3404. [Google Scholar] [CrossRef]
- Shuler, M.L. Advances in Organ-, body-, and Disease-on-a-chip Systems. Lab Chip 2019, 19, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Tousignant, L. This Miracle Medical Chip Could One Day Heal almost Anything. New York Post, 8 August 2017. [Google Scholar]
- Richman, M. Breathing Easier; U.S. Department of Veterans Affairs: Washington, DC, USA, 2018. [Google Scholar]
- Tan, G.Z.; Zhou, Y. Electrospinning of biomimetic fibrous scaffolds for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 947–960. [Google Scholar] [CrossRef]
- Okeyo, P.O.; Larsen, P.E.; Kissi, E.O.; Ajalloueian, F.; Rades, T.; Rantanen, J.; Boisen, A. Single particles as resonators for thermomechanical analysis. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Li, A.; Zhao, Y.; Li, Y.; Jiang, L.; Gu, Y.; Liu, J. Cell-derived biomimetic nanocarriers for targeted cancer therapy: Cell membranes and extracellular vesicles. Drug Deliv. 2021, 28, 1237–1255. [Google Scholar] [CrossRef] [PubMed]
- Pris, A.D.; Utturkar, Y.; Surman, C.; Morris, W.G.; Vert, A.; Zalyubovskiy, S.J.; Deng, T.; Ghiradella, H.T.; Potyrailo, R.A. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitecture. Nat. Photonics 2012, 6, 195–200. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, Q.; Shi, X.; Li, S.; Wang, W.; Luo, Z.; He, G.; Zhang, P.; Tao, P.; Song, C.; et al. Infrared detection based on localized modification of Morpho butterfly wings. Adv. Matter. 2015, 27, 1077–1082. [Google Scholar] [CrossRef]
- Grujic, D.; Vasiljevic, D.; Pantelic, D.; Tomic, L.J.; Stamenkovic, Z.; Jelenkovic, B. Infrared camera on the butterfly’s wing. Opt. Express 2018, 26, 14143–14158. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.T. Biomimetic, Polymer-Based Microcantilever Infrared Sensors. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 2007. [Google Scholar]
- Passian, A.; Wig, A.; Meriaudeau, F.; Ferrell, T.L.; Thundat, T. Knudsen forces on microcantilevers. J. Appl. Phys. 2002, 92, 6326–6333. [Google Scholar] [CrossRef] [Green Version]
- Passian, A.; Warmack, R.J.; Ferrel, T.L.; Thundat, T. Thermal transpiration at the microscale: A Crookes cantilever. Phys. Rev. Lett. 2003, 90, 124503. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, C.; Mouchet, S.R.; Verbiest, T.; Kolarić, B. Linear and nonlinear optical effects in biophotonic structures using classical and nonclassical light. J. Biophotonics 2019, 12, e201800262. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simovic-Pavlovic, M.; Bokic, B.; Vasiljevic, D.; Kolaric, B. Bioinspired NEMS—Prospective of Collaboration with Nature. Appl. Sci. 2022, 12, 905. https://doi.org/10.3390/app12020905
Simovic-Pavlovic M, Bokic B, Vasiljevic D, Kolaric B. Bioinspired NEMS—Prospective of Collaboration with Nature. Applied Sciences. 2022; 12(2):905. https://doi.org/10.3390/app12020905
Chicago/Turabian StyleSimovic-Pavlovic, Marina, Bojana Bokic, Darko Vasiljevic, and Branko Kolaric. 2022. "Bioinspired NEMS—Prospective of Collaboration with Nature" Applied Sciences 12, no. 2: 905. https://doi.org/10.3390/app12020905
APA StyleSimovic-Pavlovic, M., Bokic, B., Vasiljevic, D., & Kolaric, B. (2022). Bioinspired NEMS—Prospective of Collaboration with Nature. Applied Sciences, 12(2), 905. https://doi.org/10.3390/app12020905