Agricultural Science and Technology Innovation, Spatial Spillover and Agricultural Green Development—Taking 30 Provinces in China as the Research Object
Abstract
:1. Introduction
2. Influence Mechanism
3. Research Model Design
3.1. Measurement of China’s Agricultural Green Development Level
3.1.1. Construction of BPEIR Conceptual Model
3.1.2. Construction of an Indicator System for Measuring the Development Level of Green Agriculture
3.1.3. Inspection of the Indicator System for Measuring the Development Level of Agricultural Green
3.1.4. Construction of Agricultural Green Development Level Measurement Model
3.2. Measurement of Spatial Spillover of Agricultural Technological Innovation on the Level of Agricultural Green Development
3.2.1. Spatial Autocorrelation Test
3.2.2. Spatial Measurement Model
3.3. Variable Selection and Data Sources
3.3.1. Variable Selection
3.3.2. Data Source
4. Analysis of Results
4.1. Analysis of the Results of Measurement and Spatial–Temporal Evolution of Agricultural Green Development Level
Dynamic Analysis of the Measurement Results of Agricultural Green Development Level
4.2. Analysis of the Spatial Spillover Effect of Agricultural Science and Technology Innovation on Agricultural Green Development
4.2.1. Spatial Autocorrelation Analysis of Agricultural Science and Technology Innovation and Agricultural Green Development
4.2.2. Spatial Panel Measurement Model Inspection and Selection
4.2.3. Analysis of Spatial Panel Measurement Results Based on Economic Matrix
4.2.4. Robustness Test of Spatial Panel Econometric Model
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adnan, N.; Nordin, S.M.; Ali, M. A solution for the sunset industry: Adoption of Green Fertiliser Technology amongst Malaysian paddy farmers. Land Use Policy 2018, 79, 575–584. [Google Scholar] [CrossRef]
- Donkor, E.; Onakuse, S.; Bogue, J.; Rios-Carmenado, I.D.L. Fertiliser adoption and sustainable rural livelihood improvement in Nigeria Chock. Land Use Policy 2019, 88, 104193. [Google Scholar] [CrossRef]
- Wang, X.; Shen, J.; Zhang, W. Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy. Energy Policy 2013, 67, 508–516. [Google Scholar] [CrossRef]
- Eanes, F.R.; Singh, A.S.; Bulla, B.R.; Ranjan, P.; Fales, M.; Wickerham, B.; Doran, P.J.; Prokopy, L.S. Crop advisers as conservation intermediaries: Perceptions and policy implications for relying on nontraditional partners to increase U.S. farmers’ adoption of soil and water conservation practices. Land Use Policy 2019, 81, 360–370. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Xia, X. Measurement and spatial convergence analysis of China’s agricultural green development index. Environ. Sci. Pollut. Res. 2021, 16, 19694–19709. [Google Scholar] [CrossRef] [PubMed]
- Veisi, H.; Liaghati, H.; Alipour, A. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecol. Indic. 2016, 60, 644–654. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Q.; Jiao, X.; Ying, H.; Wang, H.; Wen, X.; Xu, W.; Li, T.; Cong, W.; Liu, X.; et al. Agriculture green development: A model for China and the world. Front. Agric. Sci. Eng. 2020, 1, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sarkar, A.; Rahman, A.; Li, X.; Xia, X. Exploring the drivers of green agricultural development (GAD) in China: A spatial association network structure approaches. Land Use Policy 2022, 112, 105827. [Google Scholar] [CrossRef]
- Yan, L.; Deng, Y.; Qu, Z. Construction of Theoretical Framework for Innovations in Green Agriculture and Practical Exploration. In Ecological Economics and Harmonious Society; Springer: Singapore, 2016; pp. 67–75. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Yu, J.; Yan, X. Toward cleaner production: What drives farmers to adopt eco-friendly agricultural production? J. Clean. Prod. 2018, 184, 550–558. [Google Scholar] [CrossRef]
- Koohafkan, P.; Altieri, M.A.; Gimenez, E.H. Green agriculture: Foundations for biodiverse, resilient and productive agricultural systems. Int. J. Agric. Sustain. 2012, 10, 61–75. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Lv, X.; Chen, X.; Shen, M. Investigating interior driving factorsand cross-industrial linkages of carbon emission efficiency in China’s construction industry: Based on Super-SBM DEA and GVAR model. J. Clean. Prod. 2019, 241, 118322. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Gao, F. Evolution trend and internal mechanism of regional total factor productivity in Chinese agriculture. J. Quant. Tech. Econ. 2015, 32, 3–19. [Google Scholar] [CrossRef]
- Liu, Z. Analysis on the dynamic and influencing factors of agricultural total factor productivity in China. Chin. J. Agr. Resour. Reg. Plan 2018, 39, 104–111. [Google Scholar] [CrossRef]
- Omotilewa, O.J.; Ricker-Gilbert, J.; Ainembabazi, J.H. Subsidies for agricultural technology adoption: Evidence from a randomized experiment with improved grain storage bags in Uganda. Am. J. Agric. Econ. 2019, 101, 753–772. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Zhou, L.; Ying, R.; Pan, D. Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China. Land Use Policy 2021, 109, 105627. [Google Scholar] [CrossRef]
- Gao, X.; Tian, L. Effects of awareness and policy on green behavior spreading in multiplex networks. Phys. A Stat. Mech. Its Appl. 2019, 514, 226–234. [Google Scholar] [CrossRef]
- Cullen, P.; Ryan, M.; O’Donoghue, C.; Hynes, S.; Huallacháin, D.; Sheridan, H. Impact of farmer self-identity and attitudes on participation in agri-environment schemes. Land Use Policy 2020, 95, 104660. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Ge, P.; Wang, S.; Huang, X. Measurement for China’s agricultural green TFP. China Popul. Resour. Environ. 2018, 28, 66–74. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Malerba, F.; Mancusi, M.L.; Montobbio, F. Innovation, international R&D spillovers and the sectoral heterogeneity of knowledge flows. Rev. World Econ. 2013, 149, 697–722. [Google Scholar] [CrossRef]
First-Level Indicators | Secondary Indicators | Unit of Measurement | Indicator Type | Interpretation of Indicators |
---|---|---|---|---|
Economic and social development | Agricultural GDP output value per unit area | CNY/hm2 | Positive | Agricultural GDP output value/sown area of crops |
Per capita disposable net income of farmers | CNY/person | Positive | Farmers’ total income per capita minus various expenditures per farmer | |
Per capita grain production | kg/person | Positive | Total food production/total population | |
Per unit area yield of grain | kg/hm2 | Positive | Food production/area of arable land | |
Total power of agricultural machinery | Ten thousand kW | Positive | Agricultural machinery power + forestry machinery power + animal husbandry and fishery machinery power | |
Resource-saving investment | Fertilizer application intensity | kg/hm2 | Negative | Scalar amount of fertilizer application/sown area of crops |
Intensity of pesticide use | kg/hm2 | Negative | Pesticide use/sown area of crops | |
Intensity of agricultural mulch use | kg/hm2 | Negative | Amount of agricultural film used/sown area of crops | |
Intensity of agricultural water use | m3/hm2 | Negative | Total water consumption/sown area of crops | |
Resource recycling | Coefficient of effective use of chemical fertilizer | CNY/kg | Positive | Planting industry output value/scalar amount of chemical fertilizer application |
Effective utilization coefficient of pesticide | CNY/kg | Positive | Planting industry output value/amount of pesticide use | |
Water-saving irrigation coefficient | % | Positive | Water-saving irrigation area/total irrigation area × 100% | |
Cultivated land multiple cropping index | % | Positive | Sown area of crops/area of arable land × 100% | |
Resource environmental friendliness | Total agricultural chemical oxygen demand COD emissions | Ten thousand tons | Negative | Agricultural waste discharge |
Total agricultural ammonia nitrogen emissions | Ten thousand tons | Negative | Agricultural waste discharge | |
Forest cover rate | % | Positive | Forest area/total land area × 100% | |
Annual afforestation area | hm2 | Positive | Annual afforestation area | |
Proportion of area of nature reserves | % | Positive | Area of natural resource protection area/area of jurisdiction × 100% |
Index | Standard Deviation | Index | Standard Deviation |
---|---|---|---|
Agricultural GDP output value per unit area | 24,911.86 | Coefficient of effective utilization of chemical fertilizer | 46.17 |
Per capita disposable net income of farmers | 5250.80 | Coefficient of pesticide effective utilization | 3761.49 |
Per capita food production | 334.74 | Coefficient of water-saving irrigation | 22.72 |
Grain yield | 1709.29 | Cultivated land multiple cropping index | 38.30 |
Total power of agricultural machinery | 3124.55 | Total agricultural chemical oxygen demand COD emissions | 34.08 |
Fertilizer application intensity | 129.17 | Total agricultural ammonia nitrogen emissions | 2.05 |
Intensity of pesticide use | 9.35 | Forest cover rate | 17.67 |
Intensity of agricultural mulch use | 14.36 | Annual afforestation area | 156,693.30 |
Intensity of agricultural water use | 14,644.74 | Proportion of area of nature reserves | 5.85 |
First-Level Indicators | Secondary Indicators | Multiple Correlation Coefficient |
---|---|---|
Economic and social development | Agricultural GDP output value per unit area | 0.682 |
Per capita disposable net income of farmers | 0.661 | |
Per capita grain production | 0.569 | |
Per unit area yield of grain | 0.708 | |
Total power of agricultural machinery | 0.676 | |
Resource-saving investment | Fertilizer application intensity | 0.610 |
Intensity of pesticide use | 0.614 | |
Intensity of agricultural mulch use | 0.458 | |
Intensity of agricultural water use | 0.181 | |
Resource recycling | Coefficient of effective use of chemical fertilizer | 0.278 |
Effective utilization coefficient of pesticide | 0.350 | |
Water-saving irrigation coefficient | 0.601 | |
Cultivated land multiple cropping Index | 0.587 | |
Resource and environmental friendliness | Total agricultural chemical oxygen demand COD emissions | 0.229 |
Total agricultural ammonia nitrogen emissions | 0.359 | |
Forest cover rate | 0.234 | |
Annual afforestation area reserves | 0.376 |
Type | Variable | Variable Definition | Average | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|---|
Explained variable | lnGad | Agricultural green development level value | 3.8192 | 0.0724 | 3.6763 | 4.0270 |
Core explanatory variable | lnast | Number of agricultural patents granted | 6.2525 | 1.2669 | 2.7726 | 8.8009 |
Agricultural technology market turnover | 13.3150 | 1.8573 | 8.5847 | 17.8577 | ||
R&D personnel full-time equivalent | 10.9618 | 1.2008 | 7.0975 | 13.5964 | ||
Gross agricultural output value | 6.9155 | 1.0493 | 3.6636 | 8.5957 | ||
Control variables | lnfsa | Financial expenditure on agriculture, forestry and water resources/sown area of crops | 8.9747 | 1.0775 | 6.3045 | 13.4003 |
lnmii | Total power of agricultural machinery/sown area of crops | 1.7776 | 0.4325 | 0.7020 | 2.7314 | |
lnadr | Affected area of crops/sown area of crops | 2.7010 | 0.8450 | 0.0032 | 4.2366 | |
lncps | Planting area of food crops/(planting area of crops minus planting area of food crops) | 5.3392 | 0.7771 | 3.8228 | 8.1075 | |
lnmci | Sown area of crops/cultivated area | 4.7764 | 0.3077 | 3.7543 | 5.3898 |
Years | Agricultural Technology R&D | Application of Agricultural Technology | ||||
---|---|---|---|---|---|---|
Moran’s I | Z Statistics | p-Value | Moran’s I | Z Statistics | p-Value | |
2006 | 0.233 *** | 2.525 | ≤0.01 | 0.316 *** | 3.354 | ≤0.01 |
2007 | 0.211 ** | 2.327 | ≤0.1 | 0.222 *** | 2.466 | ≤0.01 |
2008 | 0.220 *** | 2.408 | ≤0.01 | 0.215 *** | 2.407 | ≤0.01 |
2009 | 0.173 ** | 1.968 | ≤0.05 | 0.221 *** | 2.445 | ≤0.01 |
2010 | 0.192 ** | 2.147 | ≤0.05 | 0.243 *** | 2.657 | ≤0.01 |
2011 | 0.163 ** | 1.893 | ≤0.05 | 0.307 *** | 3.284 | ≤0.01 |
2012 | 0.147 ** | 1.747 | ≤0.05 | 0.304 *** | 3.236 | ≤0.01 |
2013 | 0.248 *** | 2.737 | ≤0.01 | 0.278 *** | 3.019 | ≤0.01 |
2014 | 0.220 *** | 2.483 | ≤0.01 | 0.203 ** | 2.274 | >0.1 |
2015 | 0.207 *** | 2.359 | ≤0.01 | 0.207 ** | 2.330 | ≤0.1 |
2016 | 0.109 * | 1.371 | ≤0.1 | 0.201 ** | 2.246 | >0.1 |
2017 | 0.107 * | 1.351 | ≤0.1 | 0.128 * | 1.549 | ≤0.1 |
2018 | 0.112 * | 1.406 | ≤0.1 | 0.124 * | 1.517 | ≤0.1 |
2019 | 0.115 * | 1.433 | ≤0.1 | 0.106 * | 1.346 | ≤0.1 |
Years | Moran’s I | Z Statistics | p-Value | Years | Moran’s I | Z Statistics | p-Value |
---|---|---|---|---|---|---|---|
2006 | 0.264 *** | 2.818 | ≤0.01 | 2013 | 0.286 *** | 3.015 | ≤0.01 |
2007 | 0.285 *** | 3.010 | ≤0.01 | 2014 | 0.266 *** | 2.826 | ≤0.01 |
2008 | 0.234 *** | 2.527 | ≤0.01 | 2015 | 0.217 *** | 2.382 | ≤0.01 |
2009 | 0.298 *** | 3.135 | ≤0.01 | 2016 | 0.107 * | 1.349 | ≤0.1 |
2010 | 0.289 *** | 3.053 | ≤0.01 | 2017 | 0.261 *** | 2.835 | ≤0.01 |
2011 | 0.323 *** | 3.376 | ≤0.01 | 2018 | 0.306 *** | 3.267 | ≤0.01 |
2012 | 0.296 *** | 3.123 | ≤0.01 | 2019 | 0.352 *** | 3.651 | ≤0.01 |
Variable | Agricultural Technology R&D | Application of Agricultural Technology | ||||
---|---|---|---|---|---|---|
LLC | Fisher-ADF | Fisher-PP | LLC | Fisher-ADF | Fisher-PP | |
InGad | −5.581 *** | 121.438 *** | 90.619 *** | −5.581 *** | 121.438 *** | 90.619 *** |
Inat | −3.517 *** | 120.151 *** | 136.382 *** | −5.280 *** | 143.264 *** | 227.995 *** |
Infsa | −1.647 ** | 140.164 *** | 179.808 *** | −1.647 ** | 140.164 *** | 179.808 *** |
Inmii | −3.385 *** | 140.730 *** | 227.857 *** | −3.385 *** | 140.730 *** | 227.857 *** |
Inadr | −3.282 *** | 138.931 *** | 255.860 *** | −3.282 *** | 138.931 *** | 255.860 *** |
Incps | −9.266 *** | 88.812 *** | 110.232 *** | −9.266 *** | 88.812 *** | 110.232 *** |
Inmci | −1.858 ** | 102.278 *** | 105.064 *** | −1.858 ** | 102.278 *** | 105.064 *** |
LM Test | Agricultural Technology R&D | Application of Agricultural Technology | ||
---|---|---|---|---|
LM Value | p-Value | LM Value | p-Value | |
LM-lag test | 110.743 *** | ≤0.01 | 104.314 *** | ≤0.01 |
LM-error test | 94.167 *** | ≤0.01 | 97.720 *** | ≤0.01 |
Robust LM-lag test | 18.179 *** | ≤0.01 | 6.975 *** | ≤0.01 |
Robust LM-error test | 1.602 | >0.1 | 0.382 | >0.1 |
LR Test | Agricultural Technology R&D | Application of Agricultural Technology | ||
---|---|---|---|---|
LR chi2(6) | Prob > chi2 | LR chi2(6) | Prob > chi2 | |
LRtest sdm_a slm_a | 83.47 *** | ≤0.0001 | 95.95 *** | ≤0.0001 |
LRtest sdm_a sem_a | 82.73 *** | ≤0.0001 | 94.39 *** | ≤0.0001 |
Wald Test | Agricultural Technology R&D | Application of Agricultural Technology | ||
---|---|---|---|---|
chi2(6) | Prob > chi2 | chi2(6) | Prob > chi2 | |
test sdm slm | 56.36 *** | ≤0.0001 | 95.00 *** | ≤0.0001 |
testnl sdm sem | 56.27 *** | ≤0.0001 | 96.86 *** | ≤0.0001 |
Variable | Agricultural Technology R&D | Application of Agricultural Technology | ||||
---|---|---|---|---|---|---|
Time Fixed Effect | Individual Fixed Effect | Double Fixed Effect | Time Fixed Effect | Individual Fixed Effect | Double Fixed Effect | |
Inast | 0.0367 *** | 0.0116 *** | 0.0176 *** | 0.0128 *** | 0.0110 *** | 0.0107 *** |
(9.80) | (3.00) | (4.13) | (8.04) | (5.96) | (5.32) | |
Infsa | 0.0328 *** | 0.0004 | −0.0042 | 0.0270 *** | 0.0016 | 0.0002 |
(7.40) | (0.05) | (−0.49) | (7.73) | (0.23) | (0.02) | |
Inmii | 0.0089 | 0.0375 *** | 0.0486 *** | 0.0319 *** | 0.0213 * | 0.0421 *** |
(1.16) | (3.34) | (4.44) | (3.43) | (1.94) | (3.91) | |
Inadr | −0.0020 | −0.0023 | −0.0021 | −0.0103 ** | −0.0004 | −0.0019 |
(−0.46) | (−1.11) | (−1.05) | (−1.07) | (−0.18) | (−0.94) | |
Incps | 0.0013 | −0.0252 *** | −0.0247 *** | 0.0016 | −0.0249 *** | −0.0302 *** |
(0.30) | (−3.67) | (−3.72) | (1.58) | (−3.75) | (−4.85) | |
Inmci | −0.0122 | 0.0308 *** | 0.0354 *** | 0.0119 | 0.0380 *** | 0.0382 *** |
(−0.99) | (2.61) | (2.86) | (0.34) | (3.26) | (3.22) | |
w * Inast | 0.0217 ** | −0.0361 *** | −0.0014 | 0.0359 *** | −0.0150 *** | −0.0111 ** |
(1.78) | (−6.28) | (−0.12) | (−4.20) | (−5.63) | (−2.10) | |
w * Infsa | −0.0031 | −0.0475 *** | −0.0624 *** | −0.0316 ** | −0.0518 *** | −0.0592 *** |
(−0.28) | (−5.61) | (−3.04) | (−4.58) | (−6.21) | (−2.92) | |
w * Inmii | 0.0843 *** | 0.2480 *** | 0.275 *** | 0.1084 *** | 0.1822 *** | 0.2631 *** |
(5.25) | (9.10) | (9.24) | (6.01) | (7.29) | (9.06) | |
w * Inadr | 0.0282 *** | −0.0017 | −0.0038 | 0.0402 *** | 0.0017 | −0.0068 |
(2.65) | (−0.39) | (−0.79) | (−1.73) | (0.40) | (−1.45) | |
w * Incps | 0.0082 | −0.0701 *** | −0.0573 *** | −0.0291 ** | −0.0577 *** | −0.0614 *** |
(0.70) | (−4.49) | (−3.69) | (−0.56) | (−3.76) | (−4.19) | |
w * Inmci | 0.1300 *** | 0.0895 *** | 0.1006 *** | 0.0482 | 0.0472 * | 0.0713 ** |
(4.50) | (3.56) | (3.24) | (−1.16) | (1.93) | (2.34) | |
sigma2 | 0.0027 *** | 0.0005 *** | 0.0004 *** | 0.0028 *** | 0.0005 *** | 0.0005 *** |
(14.49) | (14.49) | (14.40) | (14.47) | (14.49) | (14.48) | |
N | 420 | 420 | 420 | 420 | 420 | 420 |
R2 | 0.5428 | 0.1595 | 0.1871 | 0.4847 | 0.1196 | 0.1477 |
Log-likelihood | 641.8840 | 1005.2727 | 1027.9040 | 619.7385 | 1007.9326 | 1038.3224 |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
Inatr | 0.0368 *** | 0.0213 * | 0.0581 *** |
Infsa | 0.0326 *** | −0.0039 | 0.0287 *** |
Inmii | 0.0095 | 0.0850 *** | 0.0945 *** |
Inadr | −0.0022 | 0.0282 *** | 0.0261 ** |
Incps | 0.0012 | 0.0073 | 0.0085 |
Inmci | −0.0124 | 0.1291 *** | 0.1167 *** |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
Inata | 0.0120 *** | 0.0314 *** | 0.0434 *** |
Infsa | 0.0276 *** | −0.0326 *** | −0.0049 |
Inmii | 0.0302 *** | 0.0965 *** | 0.1266 *** |
Inadr | −0.0115 *** | 0.0381 *** | 0.0266 ** |
Incps | 0.0022 | −0.0277 ** | −0.0255 * |
Inmci | 0.0109 | 0.0422 | 0.0531 * |
Variable | Full-Time Equivalent of R&D Personnel | Gross Agricultural Output | ||||
---|---|---|---|---|---|---|
Time Fixed Effect | Individual Fixed Effect | Double Fixed Effect | Time Fixed Effect | Individual Fixed Effect | Double Fixed Effect | |
Inast | 0.0240 *** | −0.0068 | −0.0073 | 0.0495 *** | 0.0311 *** | 0.0262 *** |
(7.66) | (−1.04) | (−1.14) | (9.42) | (3.25) | (2.83) | |
Infsa | 0.0336 *** | 0.0036 | −0.0018 | 0.0933 *** | −0.0024 | −0.0007 |
(7.13) | (0.47) | (−0.20) | (12.99) | (−0.32) | (−0.08) | |
Inmii | 0.0155 * | 0.0224 * | 0.0432 *** | −0.0057 | 0.0163 | 0.0377 *** |
(1.87) | (1.92) | (3.70) | (−0.69) | (1.40) | (3.25) | |
Inadr | −0.0077 * | −0.0016 | −0.0031 | −0.0080 * | 0.0002 | −0.0018 |
(−1.76) | (−0.76) | (−1.49) | (−1.88) | (0.07) | (−0.85) | |
Incps | −0.0005 | −0.0272 *** | −0.0336 *** | 0.0163 *** | −0.0206 *** | −0.0261 *** |
(−0.11) | (−3.82) | (−5.00) | (3.86) | (−2.92) | (−3.90) | |
Inmci | −0.0151 | 0.0382 *** | 0.0358 *** | 0.0032 | 0.0133 | 0.0213 |
(−1.09) | (3.13) | (2.81) | (0.26) | (0.93) | (1.53) | |
w * Inast | 0.0374 *** | −0.0128 | −0.0164 | 0.0390 ** | −0.0072 | 0.0158 |
(3.87) | (−0.86) | (−0.93) | (2.29) | (−0.41) | (0.66) | |
w * Infsa | −0.0004 | −0.0477 *** | −0.0671 *** | 0.0574 ** | −0.0586 *** | −0.0573 *** |
(−0.03) | (−4.37) | (−3.19) | (2.34) | (−5.67) | (−2.73) | |
w * Inmii | 0.0974 *** | 0.1807 *** | 0.2589 *** | 0.0603 *** | 0.1813 *** | 0.2536 *** |
(5.86) | (6.83) | (7.97) | (3.64) | (7.05) | (8.09) | |
w * Inadr | 0.0346 *** | 0.0046 | −0.0051 | 0.0194 * | 0.0053 | −0.0038 |
(3.23) | (1.04) | (−1.04) | (1.90) | (1.22) | (−0.77) | |
w * Incps | −0.0055 | −0.0693 *** | −0.0727 *** | 0.0242 * | −0.0550 *** | −0.0569 *** |
(−0.43) | (−4.19) | (−4.65) | (1.84) | (−3.33) | (−3.60) | |
w * Inmci | 0.0706 ** | 0.0524 ** | 0.0657 ** | 0.0143 *** | 0.0493 | 0.0750 ** |
(2.03) | (2.04) | (1.93) | (5.59) | (1.60) | (2.16) | |
sigma2 | 0.0029 *** | 0.0005 *** | 0.0004 *** | 0.0028 *** | 0.0005 *** | 0.0004 *** |
(14.48) | (14.49) | (14.42) | (14.49) | (14.49) | (14.37) | |
N | 420 | 420 | 420 | 420 | 420 | 420 |
R2 | 0.5197 | 0.0495 | 0.0593 | 0.5612 | 0.0225 | 0.0636 |
Log-likelihood | 627.2725 | 987.2612 | 1019.5348 | 638.0121 | 991.8409 | 1022.8780 |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
Inrd | 0.0235 *** | 0.0336 *** | 0.0571 *** |
Infsa | 0.0332 *** | −0.0034 | 0.0298 *** |
Inmii | 0.0148 * | 0.0917 *** | 0.1065 *** |
Inadr | −0.0084 * | 0.0334 *** | 0.0250 ** |
Incps | −0.0005 | −0.0060 | −0.0066 |
Inmci | −0.0162 | 0.0671 ** | 0.0509 |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
Info | 0.0498 *** | 0.0402 ** | 0.0899 *** |
Infsa | 0.0934 *** | 0.0591 ** | 0.1525 *** |
Inmii | −0.0048 | 0.0625 *** | 0.0578 *** |
Inadr | −0.0081 * | 0.0197 * | 0.0116 |
Incps | 0.0164 *** | 0.0239 * | 0.0402 *** |
Inmci | 0.0037 | 0.1454 *** | 0.1491 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wang, F.; Hao, R.; Wu, L. Agricultural Science and Technology Innovation, Spatial Spillover and Agricultural Green Development—Taking 30 Provinces in China as the Research Object. Appl. Sci. 2022, 12, 845. https://doi.org/10.3390/app12020845
Zhang F, Wang F, Hao R, Wu L. Agricultural Science and Technology Innovation, Spatial Spillover and Agricultural Green Development—Taking 30 Provinces in China as the Research Object. Applied Sciences. 2022; 12(2):845. https://doi.org/10.3390/app12020845
Chicago/Turabian StyleZhang, Fan, Fulin Wang, Ruyi Hao, and Ling Wu. 2022. "Agricultural Science and Technology Innovation, Spatial Spillover and Agricultural Green Development—Taking 30 Provinces in China as the Research Object" Applied Sciences 12, no. 2: 845. https://doi.org/10.3390/app12020845