An Analysis Scheme for 3D Visualization of Positron Emitting Radioisotopes Using Positron Emission Mammography System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Measurements
2.2. The Spectral Analysis (SA) Approach
2.3. Scheme for Extraction and 3D Visualization of Positron Emitting Radioisotopes
3. Results
3.1. PEMGRAPH Measurements
3.2. Spectral Analysis of PEMGRAPH Measurements
3.3. The 3D Visualization of Positron Emitting Radioisotopes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahmohammadi Beni, M.; Krstic, D.; Nikezic, D.; Yu, K.N. A Comparative study on dispersed doses during photon and proton radiation therapy in pediatric applications. PLoS ONE 2021, 16, e0248300. [Google Scholar] [CrossRef] [PubMed]
- Shahmohammadi Beni, M.; Krstic, D.; Nikezic, D.; Yu, K.N. Medium-thickness-dependent proton dosimetry for radiobiological experiments. Sci. Rep. 2019, 9, 11577. [Google Scholar] [CrossRef] [Green Version]
- Shahmohammadi Beni, M.; Ng, C.Y.P.; Krstic, D.; Nikezic, D.; Yu, K.N. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP. PLoS ONE 2017, 12, e0174836. [Google Scholar] [CrossRef] [PubMed]
- Shahmohammadi Beni, M.; Krstic, D.; Nikezic, D.; Yu, K.N. Realistic dosimetry for studies on biological responses to X-rays and γ-rays. J. Radiat. Res. 2017, 58, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Nikezic, D.; Shahmohammadi Beni, M.; Krstic, D.; Yu, K.N. Characteristics of protons exiting from a polyethylene converter irradiated by neutrons with energies between 1 KeV and 10 MeV. PLoS ONE 2016, 11, e0157627. [Google Scholar] [CrossRef]
- Knopf, A.C.; Lomax, A. In vivo proton range verification: A review. Phys. Med. Biol. 2013, 58, R131–R160. [Google Scholar] [CrossRef] [PubMed]
- Suit, H.; Urie, M. Proton beams in radiation therapy. J. Natl. Cancer Inst. 1992, 84, 155–164. [Google Scholar] [CrossRef]
- Shahmohammadi Beni, M.; Krstic, D.; Nikezic, D.; Yu, K.N. Modeling kV X-ray-induced coloration in radiochromic films. Appl. Sci. 2018, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Shahmohammadi Beni, M.; Krstic, D.; Nikezic, D.; Yu, K.N. Modeling coloration of a radiochromic film with molecular dynamics-coupled finite element method. Appl. Sci. 2017, 7, 1031. [Google Scholar] [CrossRef] [Green Version]
- Paganetti, H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 2012, 57, R99–R117. [Google Scholar] [CrossRef]
- Parodi, K.; Polf, J.C. In vivo range verification in particle therapy. Med. Phys. 2018, 16, e1036–e1050. [Google Scholar] [CrossRef] [Green Version]
- Poludniowski, G.; Allinson, N.M.; Evans, P.M. Proton radiography and tomography with application to proton therapy. Br. J. Radiol. 2015, 88, 20150134. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, Y.; Tada, J.; Arai, N.; Hosono, K.; Sato, M.; Wagai, T.; Tsuji, H.; Tsujii, H. Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam. Radiol. Oncol. Investig. 1995, 3, 42–45. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Torikai, K.; Kawachi, N.; Shimada, H.; Satoh, T.; Nagao, Y.; Fujimaki, S.; Kokubun, M.; Watanabe, S.; Takahashi, T.; et al. Beam range estimation by measuring bremsstrahlung. Phys. Med. Biol. 2012, 57, 2843–2856. [Google Scholar] [CrossRef]
- Min, C.H.; Kim, C.H.; Youn, M.Y.; Kim, J.W. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl. Phys. Lett. 2006, 89, 183517. [Google Scholar] [CrossRef]
- Pandey, V.K.; Tan, C.M.; Sangwan, V. GaN-based readout circuit system for reliable prompt gamma imaging in proton therapy. Appl. Sci. 2021, 11, 5606. [Google Scholar] [CrossRef]
- Maccabee, H.D.; Madhvanath, U.; Raju, M.R. Tissue activation studies with alpha-particle beams. Phys. Med. Biol. 1969, 14, 213–224. [Google Scholar] [CrossRef]
- Llacer, J. Positron emission medical measurements with accelerated radioactive ion beams. Nucl. Sci. Appl. 1988, 3, 111–131. [Google Scholar]
- Parodi, K.; Enghardt, W. Potential application of PET in quality assurance of proton therapy. Phys. Med. Biol. 2000, 45, N151–N156. [Google Scholar] [CrossRef] [PubMed]
- Nishio, T.; Miyatake, A.; Inoue, K.; Gomi-Miyagishi, T.; Kohno, R.; Kameoka, S.; Nakagawa, K.; Ogino, T. Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction. Radiol. Phys. Technol. 2008, 1, 44–54. [Google Scholar] [CrossRef]
- Parodi, K.; Ferrari, A.; Sommerer, F.; Paganetti, H. Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code. Phys. Med. Biol. 2007, 52, 3369–3387. [Google Scholar] [CrossRef] [PubMed]
- Nishio, T.; Miyatake, A.; Ogino, T.; Nakagawa, K.; Saijo, N.; Esumi, H. The development and clinical use of a beam on-line PET system mounted on a rotating gantry port in proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Yamaya, T.; Inaniwa, T.; Minohara, S.; Yoshida, E.; Inadama, N.; Nishikido, F.; Shibuya, K.; Lam, C.F.; Murayama, H. A proposal of an open PET geometry. Phys. Med. Biol. 2008, 53, 757–773. [Google Scholar] [CrossRef]
- Tashima, H.; Yamaya, T.; Yoshida, E.; Kinouchi, S.; Watanabe, M.; Tanaka, E. A single-ring open PET enabling PET imaging during radiotherapy. Phys. Med. Biol. 2012, 57, 4705–4718. [Google Scholar] [CrossRef]
- Enghardt, W.; Debus, J.; Haberer, T.; Hasch, B.G.; Hinz, R.; Jäkel, O.; Krämer, M.; Lauckner, K.; Pawelke, J.; Pönisch, F. Positron emission tomography for quality assurance of cancer therapy with light ion beams. Nucl. Phys. A 1999, 654, 1047c–1050c. [Google Scholar] [CrossRef]
- Vecchio, S.; Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F.; Lanconelli, N.; Moehrs, S.; Rosso, V.; et al. A PET prototype for “in-beam” monitoring of proton therapy. IEEE Trans. Nucl. Sci. 2009, 56, 51–56. [Google Scholar] [CrossRef]
- Shao, Y.; Sun, X.; Lou, K.; Zhu, X.R.; Mirkovic, D.; Poenisch, F.; Grosshans, D. In-beam PET imaging for on-line adaptive proton therapy: An initial phantom study. Phys. Med. Biol. 2014, 59, 3373–3388. [Google Scholar] [CrossRef] [PubMed]
- Kraan, A.C.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Cirrone, G.A.P.; Cuttone, G.; Ferretti, S.; Ferrari, A.; Pirrone, G.; Romano, F.; et al. Proton range monitoring with in-beam PET: Monte Carlo activity predictions and comparison with cyclotron data. Phys. Med. 2014, 30, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sportelli, G.; Belcari, N.; Camarlinghi, N.; Cirrone, G.A.P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Ortuño, J.E.; Romano, F.; Santos, A.; et al. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system. Phys. Med. Biol. 2014, 59, 43–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, D.F.C.; Freese, D.L.; Levin, C.S. Breast-dedicated radionuclide imaging systems. J. Nucl. Med. 2016, 57, 40S–45S. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.J.; Murthy, K.; Picard, Y.; Weinberg, I.N.; Mako, R. Positron emission mammography (PEM): A promising technique for detecting breast cancer. IEEE Trans. Nucl. Sci. 1995, 42, 1012–1017. [Google Scholar] [CrossRef] [Green Version]
- Abreu, M.C.; Aguiar, J.D.; Almeida, F.G.; Almeida, P.; Bento, P.; Carrico, B.; Ferreira, M.; Ferreira, N.C.; Goncalves, F.; Leong, C.; et al. Design and evaluation of the clear-PEM scanner for positron emission mammography. IEEE Trans. Nucl. Sci. 2006, 53, 71–77. [Google Scholar] [CrossRef]
- Martinez, J.D.; Toledo, J.; Esteve, R.; Mora, F.J.; Sebastia, A.; Benlloch, J.M.; Fernandez, M.; Gimenez, E.N.; Gimenez, M.; Lerche, C.W.; et al. Fully digital trigger and pre-processing electronics for planar positron emission mammography (PEM) scanners. In Proceedings of the IEEE Symposium Conference Record Nuclear Science, Rome, Italy, 16–22 October 2004; IEEE: Manhattan, NY, USA, 2004; pp. 1778–1781. [Google Scholar]
- Huber, J.S.; Choong, W.S.; Wang, J.; Maltz, J.S.; Qi, J.; Mandelli, E.; Moses, W.W. Development of the Lbnl positron emission mammography camera. IEEE Trans. Nucl. Sci. 2003, 50, 1650–1653. [Google Scholar] [CrossRef]
- Wollenweber, S.D.; Williams, R.C.; Beylin, D.; Dolinsky, S.; Weinberg, I.N. Investigation of the quantitative capabilities of a positron emission mammography system. In Proceedings of the IEEE Symposium Conference Record Nuclear Science, Rome, Italy, 16–22 October 2004; pp. 2393–2395. [Google Scholar]
- Miyake, K.K.; Matsumoto, K.; Inoue, M.; Nakamoto, Y.; Kanao, S.; Oishi, T.; Kawase, S.; Kitamura, K.; Yamakawa, Y.; Akazawa, A.; et al. Performance evaluation of a new dedicated breast PET scanner using NEMA NU4-2008 standards. J. Nucl. Med. 2014, 55, 1198–1203. [Google Scholar] [CrossRef] [Green Version]
- Raylman, R.R.; Majewski, S.; Wojcik, R.; Weisenberger, A.G.; Kross, B.; Popov, V.; Schreiman, J.S.; Bishop, H.A. An apparatus for positron emission mammography guided biopsy. In Proceedings of the 1999 IEEE Nuclear Science Symposium, Seattle, WA, USA, 24–30 October 1999; pp. 1323–1327. [Google Scholar]
- Yoshikawa, A.; Yanagida, T.; Kamada, K.; Yokota, Y.; Pejchal, J.; Yamaji, A.; Usuki, Y.; Yamamoto, S.; Miyake, M.; Kumagai, K.; et al. Positron emission mammography using Pr: LuAG scintillator—Fusion of optical material study and systems engineering. Opt. Mater. 2010, 32, 1294–1297. [Google Scholar] [CrossRef]
- Yanagida, T.; Yoshikawa, A.; Yokota, Y.; Kamada, K.; Usuki, Y.; Yamamoto, S.; Miyake, M.; Baba, M.; Kumagai, K.; Sasaki, K.; et al. Development of Pr: LuAG scintillator array and assembly for positron emission mammography. IEEE Trans. Nucl. Sci. 2010, 57, 1492–1495. [Google Scholar] [CrossRef]
- Yanai, A.; Itoh, M.; Hirakawa, H.; Yanai, K.; Tashiro, M.; Harada, R.; Yoshikawa, A.; Yamamoto, S.; Ohuchi, N.; Ishida, T. Newly-developed positron emission mammography (PEM) device for the detection of small breast cancer. Tohoku J. Exp. Med. 2018, 245, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Grogg, K.; Min, C.H.; Zhu, X.; Paganetti, H.; Lee, H.C.; El Fakhri, G. Feasibility study of using fall-off gradients of early and late pet scans for proton range verification. Med. Phys. 2017, 44, 1734–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiqul Islam, M.; Shahmohammadi Beni, M.; Ng, C.Y.; Miyake, M.; Rahman, M.; Ito, S.; Gotoh, S.; Yamaya, T.; Watabe, H. Studies on proton range monitoring by utilizing 13N peak for proton therapy applications. PLoS ONE 2021, submitted.
- Shepp, L.A.; Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1982, 1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Shahmohammadi Beni, M.; Krstic, D.; Nikezic, D.; Yu, K.N. Studies on unfolding energy spectra of neutrons using maximum-likelihood expectation–maximization method. Nucl. Sci. Tech. 2019, 30, 134. [Google Scholar] [CrossRef]
- Carson, R.E.; Huang, S.C.; Phelps, M.E. BLD: A software system for physiological data handling and model analysis. Proc. Annu. Symp. Comput. Appl. Med. Care 1981, 5, 562–565. [Google Scholar]
- Loening, A.M.; Gambhir, S.S. AMIDE: A free software tool for multimodality medical image analysis. Mol. Imaging 2003, 2, 131–137. [Google Scholar] [CrossRef]
- Cunningham, V.J.; Jones, T. Spectral analysis of dynamic PET studies. J. Cereb. Blood Flow Metab. 1993, 13, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Veronese, M.; Rizzo, G.; Bertoldo, A.; Turkheimer, F.E. Spectral analysis of dynamic PET studies: A review of 20 years of method developments and applications. Comput. Math. Methods Med. 2016, 2016, 7187541. [Google Scholar] [CrossRef] [PubMed]
Material | Density (g/cm3) | 1H (%) | 12C (%) | 16O (%) |
---|---|---|---|---|
HDPE box | 0.950 | 14.29 | 85.71 | - |
Water-gel | 1.010 | 11.00 | 4.650 | 84.35 |
Isotope | Half-Life (mins) | Reaction | Threshold (MeV) |
---|---|---|---|
11C | 20.33 | 12C(p,pn)11C | 20.61 |
15O | 2.037 | 16O(p,pn)15O | 16.79 |
13N | 9.965 | 16O(p,2p2n)13N | 5.660 |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.R.; Beni, M.S.; Ito, S.; Gotoh, S.; Yamaya, T.; Watabe, H. An Analysis Scheme for 3D Visualization of Positron Emitting Radioisotopes Using Positron Emission Mammography System. Appl. Sci. 2022, 12, 823. https://doi.org/10.3390/app12020823
Islam MR, Beni MS, Ito S, Gotoh S, Yamaya T, Watabe H. An Analysis Scheme for 3D Visualization of Positron Emitting Radioisotopes Using Positron Emission Mammography System. Applied Sciences. 2022; 12(2):823. https://doi.org/10.3390/app12020823
Chicago/Turabian StyleIslam, Md. Rafiqul, Mehrdad Shahmohammadi Beni, Shigeki Ito, Shinichi Gotoh, Taiga Yamaya, and Hiroshi Watabe. 2022. "An Analysis Scheme for 3D Visualization of Positron Emitting Radioisotopes Using Positron Emission Mammography System" Applied Sciences 12, no. 2: 823. https://doi.org/10.3390/app12020823
APA StyleIslam, M. R., Beni, M. S., Ito, S., Gotoh, S., Yamaya, T., & Watabe, H. (2022). An Analysis Scheme for 3D Visualization of Positron Emitting Radioisotopes Using Positron Emission Mammography System. Applied Sciences, 12(2), 823. https://doi.org/10.3390/app12020823