Scalable Dew Computing
Abstract
:1. Introduction
2. Related Work
3. Architecture Model
- Edge computing includes smart devices found at the edge, which can always collaborate with higher-level servers (always connected to the Internet).
- Dew computing assumes that, in addition to the availability to communicate to the higher architecture levels, the smart devices and “things” (IoT devices) can work autonomously without communication to higher architecture levels.
4. Results
4.1. Scalability
- Vertical scalability is realized in an upwards vertical direction, usually by offloading computing requirements to more powerful computing resources in the computing architecture.
- Horizontal scalability is achieved by offloading computing requirements to more nearby computing resources.
- Distributed horizontal scalability solution (Figure 2), where offloading for scalability purposes is realized on nearby devices on the same architectural level.
- Centralized horizontal scalability solution (Figure 3), where a master device coordinates the offloading among devices on the same architecture level.
4.2. Hardwareless Computing
5. Discussion
5.1. Use Case
- Q1: Is it feasible?
- Q2: Is the resource consumption linear to workload requirements?
- Q3: What are the limits?
- High-performance data analytics (HPDA) platform with dedicated computing resources, activated according to the demand, thus implementing very powerful data center resources that can accept extremely large computing requests.
- Serverless solution using a cloud provider that takes care of cloud instances.
- Cloud solution with a specific workflow manager to take care of requirements.
5.2. Challenges
- Fault tolerance;
- Availability to perform longer;
- Availability to be independent of the limited power supply.
5.3. Limitations
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fox, A.; Griffith, R.; Joseph, A.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia, M. Above the clouds: A berkeley view of cloud computing. Dept. Electr. Eng. Comput. Sci. Univ. Calif. Berkeley Rep. UCB/EECS 2009, 28, 2009. [Google Scholar]
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [Google Scholar] [CrossRef]
- Ashton, K. That ‘internet of things’ thing. RFID J. 2009, 22, 97–114. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, D.; Xiong, N. Post-cloud computing paradigms: A survey and comparison. Tsinghua Sci. Technol. 2017, 22, 714–732. [Google Scholar] [CrossRef]
- Pan, Y.; Thulasiraman, P.; Wang, Y. Overview of Cloudlet, Fog Computing, Edge Computing, and Dew Computing. In Proceedings of the 3rd International Workshop on Dew Computing, Toronto, ON, Canada, 29–30 October 2018; pp. 20–23. [Google Scholar]
- Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016, 49, 78–81. [Google Scholar] [CrossRef]
- Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The case for VM-based cloudlets in mobile computing. Pervasive Comput. IEEE 2009, 8, 14–23. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the Internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; ACM: New York, NY, USA, 2012; pp. 13–16. [Google Scholar]
- Garcia Lopez, P.; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; Iamnitchi, A.; Barcellos, M.; Felber, P.; Riviere, E. Edge-centric computing: Vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 37–42. [Google Scholar] [CrossRef]
- Patel, M.; Naughton, B.; Chan, C.; Sprecher, N.; Abeta, S.; Neal, A. Mobile-Edge Computing Introductory Technical White Paper; Mobile-Edge Computing (MEC) Industry Initiative; ETSI: Sophia Antipolis, France, 2014; pp. 1–36. [Google Scholar]
- Wang, Y. Cloud-dew architecture. Int. J. Cloud Comput. 2015, 4, 199–210. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Skala, K.; Davidovic, D.; Afgan, E.; Sovic, I.; Sojat, Z. Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open J. Cloud Comput. 2015, 2, 16–24. [Google Scholar]
- Ristov, S.; Cvetkov, K.; Gusev, M. Implementation of a Horizontal Scalable Balancer for Dew Computing Services. Scalable Comput. Pract. Exp. 2016, 17, 79–90. [Google Scholar] [CrossRef]
- Gusev, M. What makes Dew computing more than Edge computing for Internet of Things. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1795–1800. [Google Scholar]
- Jonas, E.; Schleier-Smith, J.; Sreekanti, V.; Tsai, C.C.; Khandelwal, A.; Pu, Q.; Shankar, V.; Carreira, J.; Krauth, K.; Yadwadkar, N.; et al. Cloud programming simplified: A berkeley view on serverless computing. arXiv 2019, arXiv:1902.03383. [Google Scholar]
- Van Eyk, E.; Toader, L.; Talluri, S.; Versluis, L.; Uță, A.; Iosup, A. Serverless is more: From paas to present cloud computing. IEEE Internet Comput. 2018, 22, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Gusev, M. Edge and Dew Computing for Streaming IoT. In Proceedings of the 3rd International Workshop on Dew Computing, Toronto, ON, Canada, 29–30 October 2018; pp. 1–7. [Google Scholar]
- Glikson, A.; Nastic, S.; Dustdar, S. Deviceless edge computing: Extending serverless computing to the edge of the network. In Proceedings of the 10th ACM International Systems and Storage Conference, Haifa, Israel, 22–24 May 2017; p. 1. [Google Scholar]
- Benomar, Z.; Longo, F.; Merlino, G.; Puliafito, A. Deviceless: A Serverless Approach for the Internet of Things. In Proceedings of the 2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K), Geneva, Switzerland, 6–10 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Gusev, M.; Dustdar, S. Going Back to the Roots: The Evolution of Edge Computing, An IoT Perspective. IEEE Internet Comput. 2018, 22, 5–15. [Google Scholar] [CrossRef]
- Garrocho, C.T.B.; Oliveira, R.A.R. Counting time in drops: Views on the role and importance of smartwatches in dew computing. Wirel. Netw. 2020, 26, 3139–3157. [Google Scholar] [CrossRef]
- Ray, P.P. Minimizing dependency on internetwork: Is dew computing a solution? Trans. Emerg. Telecommun. Technol. 2019, 30, e3496. [Google Scholar] [CrossRef]
- Wang, Y. Definition and Categorization of Dew Computing. Open J. Cloud Comput. 2016, 3, 1–7. [Google Scholar]
- Ray, P.P. An introduction to dew computing: Definition, concept and implications. IEEE Access 2017, 6, 723–737. [Google Scholar] [CrossRef]
- Gusev, M.; Koteska, B.; Kostoska, M.; Jakimovski, B.; Dustdar, S.; Scekic, O.; Rausch, T.; Nastic, S.; Ristov, S.; Fahringer, T. A deviceless edge computing approach for streaming IoT applications. IEEE Internet Comput. 2019, 23, 37–45. [Google Scholar] [CrossRef]
- Seif, A.A.; El-Saber, N. Scalable distributed-computing iot applied architecture with semantic interoperable gateway. In Proceedings of the 3rd Africa and Middle East Conference on Software Engineering, Cairo, Egypt, 12–13 December 2017; pp. 43–44. [Google Scholar]
- Garrocho, C.T.B.; da Cunha Cavalcanti, C.F.M.; Oliveira, R.A.R. Performance evaluation of industrial internet of things services in devices of cloud-fog-dew-things computing. In Proceedings of the 2020 X Brazilian Symposium on Computing Systems Engineering (SBESC), Florianópolis, Brazil, 24–27 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Gusev, M. Serverless and Deviceless Dew Computing: Founding an Infrastructureless Computing. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1814–1818. [Google Scholar]
- Kritikos, K.; Skrzypek, P. A review of serverless frameworks. In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 161–168. [Google Scholar]
- Nastic, S.; Rausch, T.; Scekic, O.; Dustdar, S.; Gusev, M.; Koteska, B.; Kostoska, M.; Jakimovski, B.; Ristov, S.; Prodan, R. A Serverless Real-Time Data Analytics Platform for Edge Computing. IEEE Internet Comput. 2017, 21, 64–71. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Zhang, Y.; Ristenpart, T.; Swift, M. Peeking behind the curtains of serverless platforms. In Proceedings of the 2018 USENIX Annual Technical Conference (USENIX ATC 18), Boston, MA, USA, 11–13 July 2018; pp. 133–146. [Google Scholar]
- Hellerstein, J.M.; Faleiro, J.; Gonzalez, J.E.; Schleier-Smith, J.; Sreekanti, V.; Tumanov, A.; Wu, C. Serverless computing: One step forward, two steps back. arXiv 2018, arXiv:1812.03651. [Google Scholar]
- Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Slominski, A.; et al. Serverless computing: Current trends and open problems. In Research Advances in Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–20. [Google Scholar]
- Becker, S.; Schmidt, F.; Kao, O. EdgePier: P2P-based Container Image Distribution in Edge Computing Environments. In Proceedings of the 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX, USA, 28–30 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Tuli, S.; Tuli, S.; Wander, G.; Wander, P.; Gill, S.S.; Dustdar, S.; Sakellariou, R.; Rana, O. Next generation technologies for smart healthcare: Challenges, vision, model, trends and future directions. Internet Technol. Lett. 2020, 3, e145. [Google Scholar] [CrossRef]
- Nastic, S.; Dustdar, S. Towards deviceless edge computing: Challenges, design aspects, and models for serverless paradigm at the edge. In The Essence of Software Engineering; Springer: Cham, Switzerland, 2018; pp. 121–136. [Google Scholar]
- Pu, Q.; Ananthanarayanan, G.; Bodik, P.; Kandula, S.; Akella, A.; Bahl, P.; Stoica, I. Low Latency Geo-distributed Data Analytics. SIGCOMM Comput. Commun. Rev. 2015, 45, 421–434. [Google Scholar] [CrossRef]
- Cardellini, V.; Grassi, V.; Lo Presti, F.; Nardelli, M. Optimal Operator Placement for Distributed Stream Processing Applications. In Proceedings of the DEBS ’16 10th ACM International Conference on Distributed and Event-based Systems, Irvine, CA, USA, 20–24 June 2016; ACM: New York, NY, USA, 2016; pp. 69–80. [Google Scholar] [CrossRef]
- Nardelli, M.; Nastic, S.; Dustdar, S.; Villari, M.; Ranjan, R. Osmotic Flow: Osmotic Computing + IoT Workflow. IEEE Cloud Comput. 2017, 4, 68–75. [Google Scholar] [CrossRef]
- de Lara, E.; Gomes, C.S.; Langridge, S.; Mortazavi, S.H.; Roodi, M. Poster Abstract: Hierarchical Serverless Computing for the Mobile Edge. In Proceedings of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 109–110. [Google Scholar] [CrossRef]
- Gascon-Samson, J.; Rafiuzzaman, M.; Pattabiraman, K. ThingsJS: Towards a Flexible and Self-adaptable Middleware for Dynamic and Heterogeneous IoT Environments. In Proceedings of the M4IoT ’17 4th Workshop on Middleware and Applications for the Internet of Things, Las Vegas, NV, USA, 11 December 2017; ACM: New York, NY, USA, 2017; pp. 11–16. [Google Scholar] [CrossRef]
- Thai, M.T.; Lin, Y.D.; Lai, Y.C.; Chien, H.T. Workload and capacity optimization for cloud-edge computing systems with vertical and horizontal offloading. IEEE Trans. Netw. Serv. Manag. 2019, 17, 227–238. [Google Scholar] [CrossRef]
- Deb, P.K.; Misra, S.; Mukherjee, A. Latency-aware horizontal computation offloading for parallel processing in fog-enabled IoT. IEEE Syst. J. 2021, 16, 2537–2544. [Google Scholar] [CrossRef]
- Flores, H.; Su, X.; Kostakos, V.; Ding, A.Y.; Nurmi, P.; Tarkoma, S.; Hui, P.; Li, Y. Large-scale offloading in the Internet of Things. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 479–484. [Google Scholar]
- Mostafa, M.A.A.A.; Khater, A.M. Horizontal offloading mechanism for IoT application in fog computing using microservices case study: Traffic management system. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 640–647. [Google Scholar]
- Higuchi, T.; Ucar, S.; Altintas, O. Offloading tasks to vehicular virtual edge servers. In Proceedings of the 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW), Monterey, CA, USA, 4–7 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 162–163. [Google Scholar]
- Akutsu, K.; Phung-Duc, T.; Lai, Y.C.; Lin, Y.D. Analyzing vertical and horizontal offloading in federated cloud and edge computing systems. Telecommun. Syst. 2022, 79, 447–459. [Google Scholar] [CrossRef]
- Weiser, M. The computer for the 21st century. Sci. Am. 1991, 265, 94–104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusev, M. Scalable Dew Computing. Appl. Sci. 2022, 12, 9510. https://doi.org/10.3390/app12199510
Gusev M. Scalable Dew Computing. Applied Sciences. 2022; 12(19):9510. https://doi.org/10.3390/app12199510
Chicago/Turabian StyleGusev, Marjan. 2022. "Scalable Dew Computing" Applied Sciences 12, no. 19: 9510. https://doi.org/10.3390/app12199510
APA StyleGusev, M. (2022). Scalable Dew Computing. Applied Sciences, 12(19), 9510. https://doi.org/10.3390/app12199510