Deep Learning in Left and Right Footprint Image Detection Based on Plantar Pressure
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Labeling Strategy
2.2. Deep Learning Performance
3. Results
3.1. Experimental Results
3.2. Testing Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skoutelis, V.C.; Kanellopoulos, A.D.; Kontogeorgakos, V.A.; Dinopoulos, A.; Papagelopoulos, P.J. The orthopaedic aspect of spastic cerebral palsy. J. Orthop. 2020, 22, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.-J.; Jin, B.-X.; Zhao, Y.; Liu, Z.-H. Clinical study on acupuncture combined with low-frequency electric stimulation for scissor gait in children with spastic cerebral palsy. J. Acupunct. Tuina Sci. 2015, 13, 150–155. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Simon-Martinez, C.; Molenaers, G.; Ortibus, E.; Van Campenhout, A.; Desloovere, K. Are spasticity, weakness, selectivity, and passive range of motion related to gait deviations in children with spastic cerebral palsy? A statistical parametric mapping study. PLoS ONE 2019, 14, e0223363. [Google Scholar] [CrossRef] [PubMed]
- Crowgey, E.L.; Marsh, A.G.; Robinson, K.G.; Yeager, S.K.; Akins, R.E. Epigenetic machine learning: Utilizing DNA methylation patterns to predict spastic cerebral palsy. BMC Bioinform. 2018, 19, 225. [Google Scholar] [CrossRef]
- Rossi, S.; Colazza, A.; Petrarca, M.; Castelli, E.; Cappa, P.; Krebs, H.I. Feasibility study of a wearable exoskeleton for children: Is the gait altered by adding masses on lower limbs? PLoS ONE 2013, 8, e73139. [Google Scholar] [CrossRef] [PubMed]
- Pornsuree, O.; Ehara, Y.; Yamamoto, S.; Piyavit, S.; Sakai, K. Effect of foot orthoses on the standing balance of a child with spastic diplegic cerebral palsy: A case report. Niigata J. Health Welf. 2011, 11, 43–55. [Google Scholar]
- Miller, F. Pedobarograph Foot Evaluations in Children with Cerebral Palsy. Cerebral Palsy 2020, 1373–1380. [Google Scholar] [CrossRef]
- Son, M.S.; Jung, D.H.; You, J.S.H.; Yi, C.H.; Jeon, H.S.; Cha, Y.J. Effects of dynamic neuromuscular stabilization on diaphragm movement, postural control, balance and gait performance in cerebral palsy. NeuroRehabilitation 2017, 41, 739–746. [Google Scholar] [CrossRef]
- Chang, W.-D.; Chang, N.-J.; Lin, H.-Y.; Lai, P.-T. Changes of plantar pressure and gait parameters in children with mild cerebral palsy who used a customized external strap orthosis: A crossover study. BioMed Res. Int. 2015, 2015, 813942. [Google Scholar] [CrossRef]
- Wingert, J.R.; Burton, H.; Sinclair, R.J.; Brunstrom, J.E.; Damiano, D.L. Tactile sensory abilities in cerebral palsy: Deficits in roughness and object discrimination. Dev. Med. Child Neurol. 2008, 50, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Galamb, K.; Szilágyi, B.; Magyar, O.; Hortobágyi, T.; Nagatomi, R.; Váczi, M.; Négyesi, J. Effects of side-dominance on knee joint proprioceptive target-matching asymmetries. Physiol. Int. 2018, 105, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, E.M.; Ferreira, G.B.; Moreira, R.C.M.; Kirkwood, R.N.; Fetters, L. Efficacy of ankle-foot orthoses on gait of children with cerebral palsy: Systematic review of literature. Pediatric Phys. Ther. 2008, 20, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.; Walsh, M.; O’Sullivan, R.; Gallagher, J.; O’Brien, T.; Newman, C.J. Use of a dynamic foot pressure index to monitor the effects of treatment for equinus gait in children with cerebral palsy. J. Pediatric Orthop. 2007, 27, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Beyaert, C.; Pierret, J.; Vasa, R.; Paysant, J.; Caudron, S. Toe walking in children with cerebral palsy: A possible functional role for the plantar flexors. J. Neurophysiol. 2020, 124, 1257–1269. [Google Scholar] [CrossRef]
- Krigger, K.W. Cerebral palsy: An overview. Am. Fam. Physician 2006, 73, 91–100. [Google Scholar]
- Son, I.; Lee, G. Immediate Effects of the Dorsiflexion Angle of Hinged Ankle-foot Orthosis on the Spatiotemporal Gait Parameters of Children With Spastic Cerebral Palsy. Res. Sq. 2021, PPR354197. [Google Scholar] [CrossRef]
- Nonnekes, J.; Růžička, E.; Nieuwboer, A.; Hallett, M.; Fasano, A.; Bloem, B.R. Compensation strategies for gait impairments in Parkinson disease: A review. JAMA Neurol. 2019, 76, 718–725. [Google Scholar] [CrossRef]
- Ardhianto, P.; Subiakto, R.B.R.; Lin, C.-Y.; Jan, Y.-K.; Liau, B.-Y.; Tsai, J.-Y.; Akbari, V.B.H.; Lung, C.-W. A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images. Sensors 2022, 22, 2786. [Google Scholar] [CrossRef]
- DeHeer, P.A. Pediatric Equinus Deformity. In The Pediatric Foot and Ankle; Springer: Berlin/Heidelberg, Germany, 2020; pp. 147–162. [Google Scholar]
- Ardhianto, P.; Tsai, J.-Y.; Lin, C.-Y.; Liau, B.-Y.; Jan, Y.-K.; Akbari, V.-B.-H.; Lung, C.-W. A Review of the Challenges in Deep Learning for Skeletal and Smooth Muscle Ultrasound Images. Appl. Sci. 2021, 11, 4021. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Tsai, J.-Y.; Hung, I.Y.-J.; Guo, Y.L.; Jan, Y.-K.; Lin, C.-Y.; Shih, T.T.-F.; Chen, B.-B.; Lung, C.-W. Lumbar disc herniation automatic detection in magnetic resonance imaging based on deep learning. Front. Bioeng. Biotechnol. 2021, 691. [Google Scholar] [CrossRef]
- Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579–1586. [Google Scholar] [CrossRef]
- Chen, H.-C.; Jan, Y.-K.; Liau, B.-Y.; Lin, C.-Y.; Tsai, J.-Y.; Li, C.-T.; Lung, C.-W. Using Deep Learning Methods to Predict Walking Intensity from Plantar Pressure Images. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, New York, NY, USA, 25–29 July 2021; pp. 270–277. [Google Scholar]
- Kaya, M.; Karakuş, S.; Tuncer, S.A. Detection of ataxia with hybrid convolutional neural network using static plantar pressure distribution model in patients with multiple sclerosis. Comput. Methods Programs Biomed. 2022, 214, 106525. [Google Scholar] [CrossRef]
- Dewi, C.; Juli Christanto, H. Combination of Deep Cross-Stage Partial Network and Spatial Pyramid Pooling for Automatic Hand Detection. Big Data Cogn. Comput. 2022, 6, 85. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Yao, J.; Qi, J.; Zhang, J.; Shao, H.; Yang, J.; Li, X. A real-time detection algorithm for Kiwifruit defects based on YOLOv5. Electronics 2021, 10, 1711. [Google Scholar] [CrossRef]
- De Carolis, B.; Ladogana, F.; Macchiarulo, N. Yolo trashnet: Garbage detection in video streams. In Proceedings of the 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Bari, Italy, 27–29 May 2020; pp. 1–7. [Google Scholar]
- Leunkeu, A.N.; Lelard, T.; Shephard, R.J.; Doutrellot, P.-L.; Ahmaidi, S. Gait cycle and plantar pressure distribution in children with cerebral palsy: Clinically useful outcome measures for a management and rehabilitation. NeuroRehabilitation 2014, 35, 657–663. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Naik, U.P.; Rajesh, V.; Kumar, R. Implementation of YOLOv4 Algorithm for Multiple Object Detection in Image and Video Dataset using Deep Learning and Artificial Intelligence for Urban Traffic Video Surveillance Application. In Proceedings of the 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT), Erode, India, 15–17 September 2021; pp. 1–6. [Google Scholar]
- Xu, C.; Zhang, Y.; Fan, X.; Lan, X.; Ye, X.; Wu, T. An efficient fluorescence in situ hybridization (FISH)-based circulating genetically abnormal cells (CACs) identification method based on Multi-scale MobileNet-YOLO-V4. Quant. Imaging Med. Surg. 2022, 12, 2961–2976. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, B.; Peng, J.; Zhang, Z. Research on the use of YOLOv5 object detection algorithm in mask wearing recognition. World Sci. Res. J. 2020, 6, 276–284. [Google Scholar]
- Dewi, C.; Chen, R.-C.; Liu, Y.-T.; Liu, Y.-S.; Jiang, L.-Q. Taiwan stop sign recognition with customize anchor. In Proceedings of the 12th International Conference on Computer Modeling and Simulation, New York, NY, USA, 22–24 June 2020; pp. 51–55. [Google Scholar]
- Stawiaski, J. A pretrained densenet encoder for brain tumor segmentation. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; pp. 105–115. [Google Scholar]
- Zhou, T.; Ye, X.; Lu, H.; Zheng, X.; Qiu, S.; Liu, Y. Dense Convolutional Network and Its Application in Medical Image Analysis. BioMed Res. Int. 2022, 2022, 2384830. [Google Scholar] [CrossRef]
- Ayyachamy, S.; Alex, V.; Khened, M.; Krishnamurthi, G. Medical image retrieval using Resnet-18. In Proceedings of the Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, San Diego, CA, USA, 17–18 February 2019; pp. 233–241. [Google Scholar]
- Xu, H.; Yao, L.; Zhang, W.; Liang, X.; Li, Z. Auto-fpn: Automatic network architecture adaptation for object detection beyond classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6649–6658. [Google Scholar]
- Dose, H.; Møller, J.S.; Iversen, H.K.; Puthusserypady, S. An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst. Appl. 2018, 114, 532–542. [Google Scholar] [CrossRef]
- Chen, L.; Jin, L.; Li, Y.; Liu, M.; Liao, B.; Yi, C.; Sun, Z. Triple Generalized-Inverse Neural Network for Diagnosis of Flat Foot. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 8594–8599. [Google Scholar]
- Nadeem, A.; Jalal, A.; Kim, K. Human actions tracking and recognition based on body parts detection via Artificial neural network. In Proceedings of the 2020 3rd International conference on advancements in computational sciences (ICACS), Lahore, Pakistan, 17–19 February 2020; pp. 1–6. [Google Scholar]
- Rein, S.; Fabian, T.; Zwipp, H.; Mittag-Bonsch, M.; Weindel, S. Influence of age, body mass index and leg dominance on functional ankle stability. Foot Ankle Int. 2010, 31, 423–432. [Google Scholar] [CrossRef]
- Wafai, L.; Zayegh, A.; Woulfe, J.; Aziz, S.M.; Begg, R. Identification of foot pathologies based on plantar pressure asymmetry. Sensors 2015, 15, 20392–20408. [Google Scholar] [CrossRef]
- Chen, H.-C.; Liau, B.-Y.; Lin, C.-Y.; Akbari, V.B.H.; Lung, C.-W.; Jan, Y.-K. Estimation of Various Walking Intensities Based on Wearable Plantar Pressure Sensors Using Artificial Neural Networks. Sensors 2021, 21, 6513. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Xu, G.; Huang, H.; Liu, C.; Wang, Z.; Li, W.; Liu, S. A model for medical diagnosis based on plantar pressure. In Proceedings of the 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR), Bangalore, India, 27–30 December 2017; pp. 1–6. [Google Scholar]
- Wang, Z.; Wu, Y.; Yang, L.; Thirunavukarasu, A.; Evison, C.; Zhao, Y. Fast personal protective equipment detection for real construction sites using deep learning approaches. Sensors 2021, 21, 3478. [Google Scholar] [CrossRef]
- Elsken, T.; Staffler, B.; Metzen, J.H.; Hutter, F. Meta-learning of neural architectures for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12365–12375. [Google Scholar]
- Tadesse, G.A.; Javed, H.; Thanh, N.L.N.; Thi, H.D.H.; Thwaites, L.; Clifton, D.A.; Zhu, T. Multi-modal diagnosis of infectious diseases in the developing world. IEEE J. Biomed. Health Inform. 2020, 24, 2131–2141. [Google Scholar] [CrossRef]
Models | Model Performance Evaluation | |||||
---|---|---|---|---|---|---|
AP | mAP | Precision | Recall | F1-Score | ||
Left | Right | |||||
YOLOv3 | 99.80% | 99.81% | 99.80% | 94.00% | 99.00% | 97.00% |
YOLOv4 | 99.62% | 99.28% | 99.45% | 99.00% | 100.00% | 99.00% |
YOLOv5s | 89.80% | 93.70% | 91.70% | 99.58% | 99.64% | 100.00% |
YOLOv5m | 89.30% | 95.10% | 92.18% | 99.62% | 99.64% | 100.00% |
YOLOv5l | 91.40% | 94.60% | 92.98% | 99.42% | 99.64% | 100.00% |
YOLOv5x | 90.20% | 93.10% | 91.66% | 91.84% | 87.92% | 89.00% |
DenseNet | 90.06% | 89.17% | 89.62% | 56.00% | 97.00% | 71.00% |
ResNet-50 | 61.88% | 70.13% | 66.00% | 66.00% | 50.00% | 57.00% |
References | Data Acquisition Tools | Model | Dataset | Model Performance | |
---|---|---|---|---|---|
Left | Right | ||||
Dose et al. (2020) [41] | Electroencephalogram | CNN | 64 EEG channels | 79.90% | 78.60% |
Chen et al. (2019) [42] | Smart insole | TGINN | 835 images | 82.35% | 81.93% |
Nadeem et al. (2020) [43] | Video frames | ANN | 2391 images | 94.00% | 95.00% |
Our Study | Plantar pressure | YOLO | 974 images | 93.35% | 95.93% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardhianto, P.; Liau, B.-Y.; Jan, Y.-K.; Tsai, J.-Y.; Akhyar, F.; Lin, C.-Y.; Subiakto, R.B.R.; Lung, C.-W. Deep Learning in Left and Right Footprint Image Detection Based on Plantar Pressure. Appl. Sci. 2022, 12, 8885. https://doi.org/10.3390/app12178885
Ardhianto P, Liau B-Y, Jan Y-K, Tsai J-Y, Akhyar F, Lin C-Y, Subiakto RBR, Lung C-W. Deep Learning in Left and Right Footprint Image Detection Based on Plantar Pressure. Applied Sciences. 2022; 12(17):8885. https://doi.org/10.3390/app12178885
Chicago/Turabian StyleArdhianto, Peter, Ben-Yi Liau, Yih-Kuen Jan, Jen-Yung Tsai, Fityanul Akhyar, Chih-Yang Lin, Raden Bagus Reinaldy Subiakto, and Chi-Wen Lung. 2022. "Deep Learning in Left and Right Footprint Image Detection Based on Plantar Pressure" Applied Sciences 12, no. 17: 8885. https://doi.org/10.3390/app12178885
APA StyleArdhianto, P., Liau, B.-Y., Jan, Y.-K., Tsai, J.-Y., Akhyar, F., Lin, C.-Y., Subiakto, R. B. R., & Lung, C.-W. (2022). Deep Learning in Left and Right Footprint Image Detection Based on Plantar Pressure. Applied Sciences, 12(17), 8885. https://doi.org/10.3390/app12178885