Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R.Br. ex Benth from Djbouti, In-Vitro Cytotoxicity against Cancer Cell Lines and Antibacterial Activities
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection and Identification of Vegetable Material
2.2. Extraction of Essential Oils
2.3. GC-MS Analyses
2.4. Cytotoxicity Assay
2.5. Antibacterial Activity
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdoul-Latif, F.M.; Ainane, A.; Aboubaker, I.H.; Ahmed, N.M.; Ainane, T. Effectiveness of a diet for type 2 diabetics based on vegetables and fruits of the Cucurbitaceae family. J. Anal. Sci. Appl. Biotechnol. 2021, 3, 107–113. [Google Scholar]
- Ainane, T. Moroccan traditional treatment for fever and influenza, similar to symptoms of coronavirus COVID-19 disease: Mini Review. J. Anal. Sci. Appl. Biotechnol. 2020, 2, 1–3. [Google Scholar]
- Elmi, A.; Spina, R.; Risler, A.; Philippot, S.; Mérito, A.; Duval, R.E.; Abdoul-Latif, F.M.; Laurain-Mattar, D. Evaluation of Antioxidant and Antibacterial Activities, Cytotoxicity of Acacia seyal Del Bark Extracts and Isolated Compounds. Molecules 2020, 25, 2392. [Google Scholar] [CrossRef]
- Singh, A.P.; Biswas, A.; Shukla, A.W.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 1–21. [Google Scholar] [CrossRef]
- Li, Z.; Feiyue, Z.; Gaofeng, L. Traditional Chinese medicine and lung cancer-From theory to practice. Biomed. Pharmacother. 2021, 137, 111381. [Google Scholar]
- Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol. 2021, 35, e22900. [Google Scholar] [CrossRef]
- Roy, A.; Datta, S.; Bhatia, K.S.; Bhumika; Jha, P.; Prasad, R. Role of plant derived bioactive compounds against cancer. S. Afr. J. Bot. 2021. [Google Scholar] [CrossRef]
- Hamedi, A.; Bayat, M.; Asemani, Y.; Amirghofran, Z. A review of potential anti-cancer properties of some selected medicinal plants grown in Iran. J. Herb. Med. 2022, 33, 100557. [Google Scholar] [CrossRef]
- Khajuria, A.K.; Manhas, R.; Kumar, H.; Bisht, N. Ethnobotanical study of traditionally used medicinal plants of Pauri district of Uttarakhand, India. J. Ethnopharmacol. 2021, 276, 114204. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential Oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical Composition, Antibacterial Activity and Cytotoxic Activity against Various Human Cancer Cell Lines. Int. J. Plant Biol. 2022, 13, 315–329. [Google Scholar]
- Ali, N.A.A.; Chhetri, B.K.; Dosoky, N.S.; Shari, K.; Al-Fahad, A.J.A.; Wessjohann, L.; Setzer, W.N. Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils. Medicines 2017, 4, 17. [Google Scholar] [CrossRef]
- Khakzad, S.; Rahmani, F.; Hojjati, M.; Tabandeh, M.R. Anti-carcinogenic effects of Satureja khuzistanica and Zataria multiflora essential oils on K562 cell line proliferation. J. Food Bioprocess Eng. 2019, 2, 127–132. [Google Scholar]
- Ainane, T.; Abourriche, A.; Kabbaj, M.; Elkouali, M.; Bennamara, A.; Charrouf, M.; Lemrani, M. Biological activities of extracts from seaweed Cystoseira tamariscifolia: Antibacterial activity, antileishmanial activity and cytotoxicity. J. Chem. Pharm. Res. 2014, 6, 607–611. [Google Scholar]
- Ju, F.; Lee, H.K.; Osarogiagbon, R.U.; Yu, X.; Faris, N.; Li, J. Computer modeling of lung cancer diagnosis-to-treatment process. Transl. Lung Cancer Res. 2015, 4, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Ainane, T.; Elkouali, M.; Ainane, A.; Talbi, M. Moroccan traditional fragrance based essential oils: Preparation, composition and chemical identification. Der Pharma Chem. 2014, 6, 84–89. [Google Scholar]
- Talbi, M.; Saadali, B.; Boriky, D.; Bennani, L.; Elkouali, M.H.; Ainane, T. Two natural compounds—A benzofuran and a phenylpropane–from Artemisia dracunculus. J. Asian Nat. Prod. Res. 2016, 18, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Ainane, A.; Abdoul-Latif, F.M.; Abdoul-Latif, T.M.; Ainane, T. Evaluation of biological activities of two essential oils as a safe environmental bioinsecticides: Case of Eucalyptus globulus and Rosmarinus officinalis. Przegląd Nauk. Inżynieria I Kształtowanie Środowiska 2020, 29, 544–556. [Google Scholar] [CrossRef]
- Obame-Engonga, L.C.; Abdoul-Latif, F.M.; Ondo, J.P.; Sima-Obiang, C.; Ngoua-Meye-Misso, R.L.; Traoré, A. Phytochemical screening, antioxidant and antibacterial activities of Guibourtia ehie and Syzygium rowlandii medicinal plants from Gabon. Int. J. Curr. Res. 2017, 9, 56354–56360. [Google Scholar]
- Abdoul-Latif, F.M.; Aouled Aden, S.; Abdoulkarim Omar, D.; Mohamed Abdoul-Latif, T.; Ainane, T. Bacterial infections in hemodialysis patients at peltier hospital, Djibouti. Pharmacologyonline 2021, 3, 877–882. [Google Scholar]
- Elmi, A.; Spina, R.; Abdoul-Latif, F.; Yagi, S.; Fontanay, S.; Risler, A.; Duval, R.E.; Laurain-Mattar, D. Rapid screening for bioactive natural compounds in Indigofera caerulea Rox fruits. Ind. Crop. Prod. 2018, 125, 123–130. [Google Scholar] [CrossRef]
- Elmi, A.; Abdoul-Latif, F.M.; Spina, R.; Dupire, F.; Philippot, S.; Marie-France, C.; Jacobs, H.; Laurain-Mattar, D. Aloe djiboutiensis: Antioxidant Activity, Molecular Networking-Based Approach and In Vivo Toxicity of This Endemic Species in Djibouti. Molecules 2021, 26, 3046. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Ainane, A.; Merito, A.; Ainane, T. Chemical composition and biological activities of essential oils from Djibouti. J. Anal. Sci. Appl. Biotechnol. 2022, 4, 1–9. [Google Scholar]
- Ainane, A.; Abdoul-Latif, F.M.; Mohamed, J.; Attahar, W.; Ouassil, M.; Shybat, Z.L.; El Yaacoubi, A.; Ainane, T. Behaviour desorption study of the essential oil of Cedrus atlantica in a porous clay versus insecticidal activity against Sitophilus granarius: Explanation of the phenomenon by statistical studies. Int. J. Metrol. Qual. Eng. 2021, 12, 12. [Google Scholar] [CrossRef]
- Attahar, W.; Mohamed Abdoul-Latif, F.; Mohamed, J.; Ainane, A.; Ainane, T. Antimicrobial and antioxidant activities of Trigonella foenum-graecum essential oil from the region of settat (Morocco). Pharmacologyonline 2021, 2, 434–442. [Google Scholar]
- Susplugas, S.; Van Hung, N.; Bignon, J.; Thoison, O.; Kruczynski, A.; Sévenet, T.; Guéritte, F. Cytotoxic Arylnaphthalene Lignans from a Vietnamese Acanthaceae, Justicia patentiflora. J. Nat. Prod. 2005, 68, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Talbi, M.; Ainane, T.; Boriky, D.; Bennani, L.; Blaghen, M.; Elkouali, M. Antibacterial activity of Eudesmanolide compounds isolated from medicinal plant Artemisia herba-alba. J. Mater. Environ. Sci. 2015, 6, 2125–2128. [Google Scholar]
- Ouassil, M.; Mohamed Abdoul-Latif, F.; Attahar, W.; Ainane, A.; Ainane, T. Chemical composition of bay laurel and rosemary essential oils from morocco and their antifungal activity against fusarium strains. Pharmacologyonline 2021, 2, 426–433. [Google Scholar]
- Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement. Altern. Med. 2018, 18, 214. [Google Scholar] [CrossRef]
- Mukarram, M.; Choudhary, S.; Khan, M.A.; Poltronieri, P.; Khan, M.M.A.; Ali, J.; Kurjak, D.; Shahid, M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2021, 11, 20. [Google Scholar] [CrossRef]
- AlMotwaa, S.M.; Al-Otaibi, W.A. Determination of the chemical composition and antioxidant, anticancer, and antibacterial properties of essential oil of Pulicaria crispa from Saudi Arabia. J. Indian Chem. Soc. 2022, 99, 100341. [Google Scholar] [CrossRef]
- Shahi, A.K.; Tava, A. Essential Oil Composition of Three Cymbopogon Species of Indian Thar Desert. J. Essent. Oil Res. 1993, 5, 639–643. [Google Scholar] [CrossRef]
- Ketoh, G.K.; Koumaglo, H.K.; Glitho, I.A. Inhibition of Callosobruchus maculatus (F.)(Coleoptera: Bruchidae) development with essential oil extracted from Cymbopogon schoenanthus L. Spreng.(Poaceae), and the wasp Dinarmus basalis (Rondani)(Hymenoptera: Pteromalidae). J. Stored Prod. Res. 2005, 41, 363–371. [Google Scholar] [CrossRef]
- Katiki, L.; Chagas, A.; Takahira, R.; Juliani, H.; Ferreira, J.; Amarante, A. Evaluation of Cymbopogon schoenanthus essential oil in lambs experimentally infected with Haemonchus contortus. Vet. Parasitol. 2011, 186, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Malti, C.E.W.; El Haci, I.A.; Hassani, F.; Paoli, M.; Gibernau, M.; Tomi, F.; Casanova, J.; Bekhechi, C. Composition, Chemical Variability and Biological Activity of Cymbopogon schoenanthus Essential Oil from Central Algeria. Chem. Biodivers. 2020, 17, e2000138. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, I.; Paré, A.; Kaboré, D.; Montet, D.; Durand, N.; Bouajila, J.; Bassolé, I.H.N. Antifungal and antiaflatoxinogenic effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus essential oils alone and in combination. J. Fungi 2022, 8, 117. [Google Scholar] [CrossRef]
- Simiyu, S.K. Bioevaluation of Insecticidal and Repellen Plants from Central Region of Kenya and Chemical Identification of Bioactive Derivatives. Doctoral Dissertation, Kenyatta University, Nairobi, Kenyatta, 2004. [Google Scholar]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Manosroi, J.; Dhumtanom, P.; Manosroi, A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett. 2006, 235, 114–120. [Google Scholar] [CrossRef]
- Sharma, P.R.; Mondhe, D.M.; Muthiah, S.; Pal, H.C.; Shahi, A.K.; Saxena, A.K.; Qazi, G.N. Anticancer activity of an essential oil from Cymbopogon flexuosus. Chem. Interact. 2009, 179, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Yen, N.; Zainah, A.; Arapoc, D.J.; Mohamed ZA, M.A.; Shafii, K. Anticancer Effect and Apoptosis Induction of Cymbopogon citratus Plant on Head and Neck HTB43 Cancer Cell Lines. Res. Dev. Semin. Bangi (Malays.) 2016, 48, 48050355. [Google Scholar]
- Sujatha, K.; Sirisha, K.B. Anti-cancer and Anti-oxidant activity of essential oils of Rosmarinus officinalis, Azadirachta indica, Syzygium aromaticum and Cymbopogon nardus. J. Pharmacogn. Phytochem. 2019, 8, 4493–4498. [Google Scholar]
- Pan, D.; Machado, L.; Bica, C.G.; Machado, A.K.; Steffani, J.A.; Cadoná, F.C. In Vitro Evaluation of Antioxidant and Anticancer Activity of Lemongrass (Cymbopogon citratus (D.C.) Stapf). Nutr. Cancer 2021, 74, 1474–1488. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Ayatollahi, S.A.; Varoni, E.M.; Salehi, B.; Kobarfard, F.; Sharifi-Rad, M.; Sharifi-Rad, M. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia 2017, 65, 802–812. [Google Scholar]
- Tsuruoka, T.; Bekh-Ochir, D.; Kato, F.; Sanduin, S.; Shataryn, A.; Ayurzana, A.; Satou, T.; Li, W.; Koike, K. The essential oil of Mongolian Nepeta sibirica: A single component and its biological activities. J. Essent. Oil Res. 2012, 24, 555–559. [Google Scholar] [CrossRef]
- Skorić, M.; Gligorijević, N.; Čavić, M.; Todorović, S.; Janković, R.; Ristić, M.; Radulović, S. Cytotoxic activity of Nepeta rtanjensis Diklić & Milojević essential oil and its mode of action. Ind. Crops Prod. 2017, 100, 163–170. [Google Scholar]
- Jaradat, N.; Al-Maharik, N.; Abdallah, S.; Shawahna, R.; Mousa, A.; Qtishat, A. Nepeta curviflora essential oil: Phytochemical composition, antioxidant, anti-proliferative and anti-migratory efficacy against cervical cancer cells, and α-glucosidase, α-amylase and porcine pancreatic lipase inhibitory activities. Ind. Crop. Prod. 2020, 158, 112946. [Google Scholar] [CrossRef]
- Ashrafi, B.; Rashidipour, M.; Gholami, E.; Sattari, E.; Marzban, A.; Kheirandish, F.; Khaksarian, M.; Taherikalani, M.; Soroush, S. Investigation of the phytochemicals and bioactivity potential of essential oil from Nepeta curvidens Boiss. & Balansa. S. Afr. J. Bot. 2020, 135, 109–116. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Jamali, T.; Kavoosi, G.; Ardestani, S.K. In-vitro and in-vivo anti-breast cancer activity of OEO (Oliveria decumbens vent essential oil) through promoting the apoptosis and immunomodulatory effects. J. Ethnopharmacol. 2020, 248, 112313. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-S.; Hong, J.Y.; Lee, J.-H.; Lee, H.-J.; Park, J.Y.; Choi, J.-H.; Park, H.-J.; Hong, J.; Lee, K.-T. β-Caryophyllene in the Essential Oil from Chrysanthemum Boreale Induces G1 Phase Cell Cycle Arrest in Human Lung Cancer Cells. Molecules 2019, 24, 3754. [Google Scholar] [CrossRef]
- Piasecki, B.; Biernasiuk, A.; Skiba, A.; Skalicka-Woźniak, K.; Ludwiczuk, A. Composition, Anti-MRSA activity and toxicity of essential oils from Cymbopogon species. Molecules 2021, 26, 7542. [Google Scholar] [PubMed]
- Sharma, A.; Nayik, G.A.; Cannoo, D.S. Pharmacology and Toxicology of Nepeta cataria (Catmint) Species of Genus Nepeta: A Review. Plant Hum. Health 2019, 3, 285–299. [Google Scholar] [CrossRef]
Cell Lines | Origin | Source | Growth Medium |
---|---|---|---|
A2780 | Ovarian carcinoma | ECACC-93112517 | Gibco RPMI 1640 |
A549 | Lung carcinoma | ATCC®-CCL-185TM | Gibco RPMI 1640 |
HCT116 | Colorectalcarcinoma | ATCC®-CCL-247TM | Gibco McCoy’s 5A |
HEK-293 | Embryonic kidney | ATCC®-CRL-1573TM | Gibco RPMI 1640 |
JIMT-T1 | Breast carcinoma | DSMZ-ACC 589 | Gibco DMEM |
K562 | Myelogenous leukemia | ATCC®-CCL-243TM | Gibco RPMI 1640 |
MIA-Paca2 | Pancreas carcinoma | ATCC®-CRL-1420TM | Gibco DMEM |
MRC5 | Lung normal | ATCC®-CCL-171TM | Gibco DMEM |
NCI-N87 | Gastric carcinoma | ATCC®-CRL-5822TM | Gibco RPMI 1640 |
PC3 | Prostate carcinoma | ATCC®-CRL-1435TM | Gibco RPMI 1640 |
RT4 | Urinary bladder | ATCC®-HTB-2TM | Gibco McCoy’s 5A |
U2OS | Bone osteosarcoma | ATCC®-HTB-96TM | Gibco McCoy’s 5A |
U87-MG | Brain glioblastoma | ATCC®-HTB-14TM | Gibco DMEM |
Gram Negative | Gram Positive | ||
---|---|---|---|
Strains | Code/Source | Strains | Code/Source |
Acinetobacter baumannii Enterobacter cloacae Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Salmonella enterica Shigella sonnei | ATCC 19606 Clinical isolate ATCC 25922 ATCC 700603 ATCC 27853 ATCC 13311 ATCC 9290 | Corynebacterium sp. Enterococcus faecalis Staphylococcus aureus Staphylococcus epidermidis Streptococcus agalactiae | Clinical isolate ATCC 29212 ATCC 29213 Clinical isolate ATCC 27956 |
Essential Oil | Yield (%) |
---|---|
CSEO | 1.16 ± 0.22 |
NAEO | 1.25 ± 0.25 |
Pic | RT (*) | Compounds | CSEO | NAEO |
---|---|---|---|---|
1 | 6.35 | 3-Isopropenyl-5-methyl-1-cyclohexene | 32.3 | - |
2 | 6.51 | α-Phellandrene | 0.2 | - |
3 | 7 | β-Phellandrene | 0.5 | - |
4 | 7.1 | D-Limonene | 11.3 | - |
5 | 7.3 | β-trans-Ocimene | 1.7 | - |
6 | 7.54 | Ocimene | 1.1 | - |
7 | 8.15 | 4-Nonanone | 2.1 | - |
8 | 8.49 | L-Fenchone | 0.5 | - |
9 | 8.75 | Linalol | - | 0.4 |
10 | 9.24 | 2-p-Menthen-1-ol | 5.1 | - |
11 | 9.49 | cis-p-menth-2-en-1-ol | 0.2 | - |
12 | 9.6 | Terpineol, cis-.beta.- | 3.5 | - |
13 | 10.21 | Cyclohexene, 3-acetoxy-4-(1-hydroxy-1-methylethyl)-1-methyl- | 0.8 | - |
14 | 10.39 | Anethofuran | 0.7 | - |
15 | 10.58 | α-Terpineol | 8.5 | - |
16 | 10.7 | α-Phellandren-8-ol | 0.7 | - |
17 | 10.823 | cis-Piperitol | 2.1 | - |
18 | 10.9 | trans-Piperitol | 1.4 | - |
19 | 11.09 | gamma.-Isogeraniol | 0.6 | - |
20 | 11.22 | cis-Geraniol | 0.4 | - |
21 | 11.55 | piperitone | - | 1.7 |
22 | 11.85 | 4-Undecanone | 0.3 | - |
23 | 11.95 | 2-Caren-10-al | 0.3 | - |
24 | 12.13 | 2-Undecanone | - | 0.8 |
25 | 12.14 | Cyclohexene, 2-ethenyl-1,3,3-trimethyl- | 0.2 | - |
26 | 12.27 | 1-Tetradecyne | 0.3 | 0.8 |
27 | 12.34 | 2-Acetoxy-1,8-cineole | 0.4 | - |
28 | 12.56 | Boschnialactone | - | 3.6 |
29 | 12.87 | Isogeraniol | - | 1.7 |
30 | 12.95 | Neryl acetate | 0.5 | - |
31 | 13.07 | Geraniol acetate | 3.7 | - |
32 | 13.31 | Limonene oxide | - | 1 |
33 | 13.43 | β-Bourbonene | - | 0.6 |
34 | 13.5 | Elemene | 0.8 | 0.5 |
35 | 13.68 | 1-Methyl-2-decalone | - | 6.1 |
36 | 13.81 | Oplopanone | - | 1.8 |
37 | 13.93 | Cis-caryophyllene | 0.8 | 5.7 |
38 | 13.99 | Cyclohexanol, acetate | - | 5 |
39 | 14.09 | α-Bergamotene | 0.2 | - |
40 | 14.57 | Inknown | - | 0.9 |
41 | 14.63 | 4-Dodecanone, 11-methyl- | 0.3 | - |
42 | 14.74 | Phellandral | - | 8.6 |
43 | 14.74 | Germacrene D | 0.3 | - |
44 | 14.86 | β-eudesmene | 0.2 | - |
45 | 14.94 | Methyl (2E)-2-nonenoate | 0.2 | 53.2 |
46 | 15.15 | τ-cadinene | 0.3 | - |
47 | 15.2 | δ-cadinene | 0.6 | - |
48 | 15.25 | L-calamenene | - | 2 |
49 | 15.59 | β- elemol | 7.8 | - |
50 | 16.03 | Caryophyllene oxide | 1.2 | 2.8 |
51 | 16.31 | Cis-carveol | 0.2 | - |
52 | 16.41 | Cubenol | - | 1.5 |
53 | 16.52 | Eudesm-7(11)-en-4-ol | 1.4 | - |
54 | 16.61 | γ-eudesmol | 0.7 | - |
55 | 16.72 | τ-cadinol | 0.6 | - |
56 | 16.89 | 10-epi-β-eudesmol | 3 | - |
57 | 16.97 | Viridiflorol | 0.7 | 1.3 |
58 | 17.18 | Trans-2-Hydroxy-1,8-cineole | 0.2 | - |
59 | 17.49 | Eudesma-4,11-dien-2-ol | 0.3 | - |
60 | 17.68 | longipinocarveol | 0.3 | - |
61 | 18.69 | Eudesm-5-en-11-ol | 0.4 | - |
Total (%) | 99.9 | 99.1 |
Cell Line | CSEO | NAEO | Vinblastine | Doxorubicie | Combrestatin A4 | MMAE (*) |
---|---|---|---|---|---|---|
A2780 | 0.14 ± 0.03 | 0.62 ± 0.09 | - | - | - | 0.45 ± 0.01 |
A549 | 0.49 ± 0.23 | 0.07 ± 0.01 | - | 56.60 ± 0.84 | 20.00 ± 0.10 | 0.46 ± 0.05 |
HCT116 | 0.65 ± 0.03 | 0.11 ± 0.01 | 35.00 ± 0.84 | - | 2.00 ± 0.10 | 2.07 ± 0.02 |
HEK293 | 0.19 ± 0.05 | 0.83 ± 0.11 | - | - | - | - |
JIMT-T1 | 1.50 ± 0.30 | 2.07 ± 0.20 | - | - | - | - |
K562 | 0.99 ± 0.01 | 1.00 ± 0.01 | 20.00 ± 0.12 | - | 5.00 ± 0.30 | 3.12 ± 0.20 |
MIA-Paca2 | 0.55 ± 0.02 | 0.86 ± 0.01 | - | - | - | 4.36 ± 0.20 |
MRC-5 | 0.83 ± 0.09 | 0.09 ± 0.01 | - | 39.88 ± 1.22 | - | - |
NCI-N87 | 3.26 ± 1.52 | 0.90 ± 0.27 | - | - | - | 1.65 ± 0.07 |
PC3 | 0.29 ± 0.01 | 0.80 ± 0.07 | - | 2.09 ± 0.03 | 0.36 ± 0.03 | |
RT4 | 4.75 ± 1.24 | 0.53 ± 0.01 | - | 36.29 ± 1.20 | - | 0.50 ± 0.01 |
U2OS | 0.24 ± 0.02 | 0.67± 0.05 | - | - | - | - |
U87-MG | 0.59 ± 0.09 | 1.13 ± 0.22 | 2.00 ± 0.04 | 99.61 ± 2.34 | 9.00 ± 0.50 | 0.21 ± 0.03 |
Gram | Bacterial Strain | CSEO (*) | NAEO (*) |
---|---|---|---|
Gram + | Corynebacterium sp. | + | - |
Enterococcus faecalis | - | - | |
Staphylococcus aureus | + | - | |
Staphylococcus epidermidis | - | - | |
Streptococcus agalactiae | - | - | |
Gram − | Acinetobacter baumannii | - | - |
Enterobacter cloacae | - | - | |
Escherichia coli | - | - | |
Klebsiella pneumoniae | + | - | |
Pseudomonas aeruginosa | + | - | |
Salmonella enterica sv. Typhimurium | - | - | |
Shigella sonnei | - | - |
Essential Oils | Investigator | Place | Major Constituents |
---|---|---|---|
CSEO | Shahi and Tava (1993) [31] | Jaisalmer (India) | Limonene (19.54%) and 2-undecanone (14.68%) |
Ketoh et al. (2005) [32] | Kozah (Togo) | Piperitone (61.01%) and Carene-2 (23.4%) | |
Katiki et al. (2012) [33] | Sao Paulo (Brazil) | Geraniol (59.42%) and Geranial (13.49%) | |
Watheq Malti et al. (2020) [34] | Bechar–Ghardaia (Algeria) | Cis-p-menth-2-en-1-ol (22.6-28.5%), trans-p-menth-2-en-1-ol (15.4–16.3%) | |
Sawadogo et al. (2022) [35] | Ouagadougou (Burkina Faso) | Piperitone (59.8%) and 2-carene (16.4%) | |
NAEO | Simiyu (2004) [36] | Central (Kenya) | nepetalactone (14.67%) and β-cubebene (10.52%) |
Essential Oil of Plant | Cancer Cell Lines Tested | Reference |
---|---|---|
Cymbopogon nardus | Oral (KB) and blood (P388) | Manosroi et al. (2006) [38] |
Cymbopogon flexuosus | Colon (HT-29, HCT-15, SW-620, 502713), lung (A549, HOP-62, H-226), cervix (SiHa), oral (KB), prostate (DU-145) and promyelocytic leukemia (HL-60) | Sharma et al. (2009) [39] |
Cymbopogon citratus | Head and neck (HTB43) | Yen et al. (2016) [40] |
Cymbopogon nardus | Breast (MCF-7), Cervic (HeLa) and myelogenous leukemia (K562). | Sujatha et al. (2019) [41] |
Cymbopogon citratus | Kidneys (VERO) and Cervic (SiHa) | Pan et al. (2022) [42] |
Nepeta schiraziana | Liver tissue (Hep-G2) and breast (MCF-7). | Sharifi-rad et al. (2017) [43] |
Nepeta sibirica | Stomach (HL60, Kato III) | Tsuruoka et al. (2012) [44] |
Nepeta rtanjensis | Cervic (HeLa), myelogenous leukemia (K562), Lung (A549), colon (LS-174) and breast (MDA-MB-231). | Skorić et al. (2017) [45] |
Nepeta curviflora | Cervic (HeLa) | Jaradat et al. (2020) [46] |
Nepeta curvidens | Lung (A549), oral (KB) and prostate (C450). | Ashrafi et al. (2020) [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Abdoul-Latif, F.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R.Br. ex Benth from Djbouti, In-Vitro Cytotoxicity against Cancer Cell Lines and Antibacterial Activities. Appl. Sci. 2022, 12, 8699. https://doi.org/10.3390/app12178699
Mohamed Abdoul-Latif F, Elmi A, Merito A, Nour M, Risler A, Ainane A, Bignon J, Ainane T. Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R.Br. ex Benth from Djbouti, In-Vitro Cytotoxicity against Cancer Cell Lines and Antibacterial Activities. Applied Sciences. 2022; 12(17):8699. https://doi.org/10.3390/app12178699
Chicago/Turabian StyleMohamed Abdoul-Latif, Fatouma, Abdirahman Elmi, Ali Merito, Moustapha Nour, Arnaud Risler, Ayoub Ainane, Jérôme Bignon, and Tarik Ainane. 2022. "Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R.Br. ex Benth from Djbouti, In-Vitro Cytotoxicity against Cancer Cell Lines and Antibacterial Activities" Applied Sciences 12, no. 17: 8699. https://doi.org/10.3390/app12178699