Additive Orthant Loss for Deep Face Recognition
Abstract
:1. Introduction
2. Background
2.1. Deep Face Recognition System
2.2. Some Known Loss Functions
3. Orthant Loss
Algorithm 1 The pseudo-code of Orthant loss |
Input: Feature vectors , Weight matrix , Ground-Truth ID , Hyperparameters and .
|
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, A.K.; Li, S.Z. Handbook of Face Recognition; Springer: New York, NY, USA, 2011. [Google Scholar]
- Sun, Y.; Chen, Y.; Wang, X.; Tang, X. Deep learning face representation by joint identification-verification. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 1988–1996. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2019, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Shi, Y.; Jain, A.K. Probabilistic face embeddings. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 6902–6911. [Google Scholar]
- Shi, Y.; Yu, X.; Sohn, K.; Chandraker, M.; Jain, A.K. Towards universal representation learning for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 6817–6826. [Google Scholar]
- Ali, A.; Testa, M.; Bianchi, T.; Magli, E. Biometricnet: Deep unconstrained face verification through learning of metrics regularized onto gaussian distributions. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 133–149. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Sun, Y.; Wang, X.; Tang, X. Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 2892–2900. [Google Scholar]
- Ding, C.; Tao, D. Robust face recognition via multimodal deep face representation. IEEE Trans. Multimed. 2015, 17, 2049–2058. [Google Scholar] [CrossRef]
- Sankaranaratanan, S.; Alavi, A.; Castillo, C.D.; Chellappa, R. Triplet probabilistic embedding for face verification and clustering. In Proceedings of the 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), Niagara Falls, NY, USA, 6–9 September 2016; pp. 1–8. [Google Scholar]
- Liu, B.; Deng, W.; Zhong, Y.; Wang, M.; Hu, J.; Tao, X.; Huang, Y. Fair loss: Margin-aware reinforcement learning for deep face recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 10052–10061. [Google Scholar]
- Sun, Y.; Cheng, C.; Zhang, Y.; Zhang, C.; Zheng, L.; Wang, Z.; Wei, Y. Circle loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 6398–6407. [Google Scholar]
- Wen, Y.; Liu, W.; Weller, A.; Raj, B.; Singh, R. Sphereface2: Binary classification is all you need for deep face recognition. arXiv 2021, arXiv:2108.01513. [Google Scholar]
- Sun, Y.; Wang, X.; Tang, X. Sparsifying neural network connections for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4856–4864. [Google Scholar]
- Wu, X.; He, R.; Sun, Z.; Tan, T. A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2884–2896. [Google Scholar] [CrossRef]
- Duong, C.N.; Quach, K.G.; Jalata, I.; Le, N.; Luu, K. Mobiface: A lightweight deep learning face recognition on mobile devices. In Proceedings of the 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), Tampa, FL, USA, 23–26 September 2019; pp. 1–6. [Google Scholar]
- Zhu, N.; Yu, Z.; Kou, C. A new deep neural architecture search pipeline for face recognition. IEEE Access 2020, 8, 91303–91310. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [Google Scholar]
- Sun, Y.; Wang, X.; Tang, X. Deep learning face representaion from predicting 10,000 classes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1891–1898. [Google Scholar]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 499–515. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Yang, M. Large-margin softmax loss for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016; pp. 507–516. [Google Scholar]
- Wang, F.; Xiang, X.; Cheng, J.; Yuille, A.L. Normface: L2 hypersphere embedding for face verification. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1041–1049. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 212–220. [Google Scholar]
- Gao, R.; Yang, F.; Yang, W.; Liao, Q. Margin loss: Making faces more separable. IEEE Signal Process. Lett. 2018, 25, 308–312. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, H.; Li, J.; Fu, Y. Improving face representation learning with center invariant loss. Image Vis. Comput. 2018, 79, 123–132. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 5265–5274. [Google Scholar]
- Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive margin softmax for face verification. IEEE Signal Process. Lett. 2018, 25, 926–930. [Google Scholar] [CrossRef]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 4690–4699. [Google Scholar]
- Ou, W.; Po, L.; Zhou, C.; Zhang, Y.; Feng, L.; Rehman, Y.A.U.; Zhao, A.Y. LinCos-softmax: Learning angle-discriminative face representations with linearity-enhanced cosine logits. IEEE Access 2020, 8, 109758–109769. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, S.; Huang, Z.; Zhou, F. Magface: A universal representation for face recognition and quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 14225–14234. [Google Scholar]
- Tao, Y.; Zheng, W.; Yang, W.; Wang, G.; Liao, Q. Frontal-centers guided face: Boosting face recognition by learning pose-invariant features. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2272–2283. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Liang, Y.; Gu, L.; Lei, Z. Rvface: Reliable vector guided softmax loss for face recognition. IEEE Trans. Image Process. 2022, 31, 2337–2351. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Deng, W. Deep face recognition: A survey. Neurocomputing 2021, 429, 215–244. [Google Scholar] [CrossRef]
- Fuad, M.T.H.; Fime, A.A.; Sikder, D.; Iftee, M.A.R.; Rabbi, J.; Al-rakhami, M.S.; Gumaei, A.; Sen, O.; Fuad, M.; Islam, M.N. Advances in deep learning techniques for face recognition. IEEE Access 2021, 9, 99112–99142. [Google Scholar] [CrossRef]
- Sengupta, S.; Chen, J.-C.; Castillo, C.; Patel, V.M.; Chellappa, R.; Jacobs, D.W. Frontal to profile face verification in the wild. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–9. [Google Scholar]
- Moschoglou, S.; Papaioannou, A.; Sagonas, C.; Deng, J.; Kotsia, I.; Zafeiriou, S. AgeDB: The first manually collected, in-the-wild age database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 51–59. [Google Scholar]
- Kemelmacher-Shlizerman, I.; Seitz, S.M.; Miller, D.; Brossard, E. The megaface benchmark: 1 million faces for recognition at scale. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4873–4882. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS), Ft. Lauderdale, FL, USA, 11–13 April 2011. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Liu, C.; Chen, P.; Zhuang, B.; Shen, C.; Zhang, B.; Ding, W. Sa-bnn: State-aware binary neural network. In Proceedings of the AAAI Conference on Artificial Intelligence, virtually, 2–9 February 2021; pp. 2091–2099. [Google Scholar]
- Kartaphy, A.; Li, F.F.; Johnson, J. CS231n: Convolutional neural networks for visual recognition. Neural Netw. 2016, 1. Available online: Http://cs231n.github.io (accessed on 1 July 2022).
- Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning face representation from scratch. arXiv 2014, arXiv:1411.7923. [Google Scholar]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.B.; Ramesh, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments; University of Massachusetts: Amherst, MA, USA, 2007; Technical Report 07-49, October 2007. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
Datasets | Number of Identities | Number of Images | Types |
---|---|---|---|
CASIA-Webface [47] | 10 K | M | Training |
LFW [49] | 5749 | 13,233 | Validation |
CFP-FP [40] | 500 | 7000 | Validation |
AgeDB-30 [41] | 568 | 16,488 | Validation |
MegaFace(pro.) [42] | 530 | 3530 | Testing |
MegaFace(dis.) [42] | 690 K | 1 M | Testing |
Network model | LResNet50E-IR [33] |
Batch size N | 512 |
Feature length l | 512 |
Optimizer | SGD Optimizer |
Momentum | |
Weight decay | |
Total iteration | |
Scaling constant s | 64 |
Margin size | |
Slope control factor r | 30 |
Margin control factor a | 2 |
Loss Function | LFW | CFP-FP | AgeDB-30 |
---|---|---|---|
Softmax | |||
SoftOrthFace | |||
N-Softmax | |||
N-SoftOrthFace | |||
ArcFace [33] | |||
ArcCentFace | 99.45 | ||
ArcOrthFace | 95.73 | 95.18 | |
MagFace [35] | |||
MagCentFace | |||
MagOrthFace | |||
Center loss [25] | |||
SphereFace [28] |
Loss Function | Rank1 Accuracy | Verification Accuracy |
---|---|---|
ArcFace | ||
ArcCentFace | ||
ArcOrthFace | 91.77 | 94.32 |
MagFace | ||
MagCentFace | ||
MagOrthFace | ||
Center loss | ||
SphereFace |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.; Yu, N.Y. Additive Orthant Loss for Deep Face Recognition. Appl. Sci. 2022, 12, 8606. https://doi.org/10.3390/app12178606
Seo Y, Yu NY. Additive Orthant Loss for Deep Face Recognition. Applied Sciences. 2022; 12(17):8606. https://doi.org/10.3390/app12178606
Chicago/Turabian StyleSeo, Younghun, and Nam Yul Yu. 2022. "Additive Orthant Loss for Deep Face Recognition" Applied Sciences 12, no. 17: 8606. https://doi.org/10.3390/app12178606
APA StyleSeo, Y., & Yu, N. Y. (2022). Additive Orthant Loss for Deep Face Recognition. Applied Sciences, 12(17), 8606. https://doi.org/10.3390/app12178606