Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit
Abstract
:1. Introduction
2. Device and Quasiparticle Injection
3. Quasiparticle Probe
4. Quasiparticle Diffusion in the Superconducting Qubit
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Parameters of the Sample
Parameter | Value |
---|---|
Bare frequency of the cavity | 9.0524 GHz |
Dispersive frequency of the cavity | 9.0905 GHz |
Qubit frequency | 7.0905 GHz |
Anharmonicity | −343 MHz |
Cavity–qubit coupling | 66 MHz |
Purcell decay | 1/630 s |
References
- Lisenfeld, J.; Bilmes, A.; Ustinov, A.V. Enhancing the Coherence of Superconducting Quantum Bits with Electric Fields. arXiv 2022, arXiv:2208.01570. [Google Scholar] [CrossRef]
- Martinis, J.M.; Cooper, K.B.; McDermott, R.; Steffen, M.; Ansmann, M.; Osborn, K.D.; Cicak, K.; Oh, S.; Pappas, D.P.; Simmonds, R.W.; et al. Decoherence in Josephson Qubits from Dielectric Loss. Phys. Rev. Lett. 2005, 95, 210503. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, J.M.; Murray, C.E.; Fung, Y.K.K.; McClure, D.T.; Dial, O.; Shanks, W.; Sleight, J.W.; Steffen, M. Investigating Surface Loss Effects in Superconducting Transmon Qubits. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- de Graaf, S.E.; Faoro, L.; Ioffe, L.B.; Mahashabde, S.; Burnett, J.J.; Lindström, T.; Kubatkin, S.E.; Danilov, A.V.; Tzalenchuk, A.Y. Two-level systems in superconducting quantum devices due to trapped quasiparticles. Sci. Adv. 2020, 6, eabc5055. [Google Scholar] [CrossRef] [PubMed]
- Martinis, J.M.; Ansmann, M.; Aumentado, J. Energy Decay in Superconducting Josephson-Junction Qubits from Nonequilibrium Quasiparticle Excitations. Phys. Rev. Lett. 2009, 103, 097002. [Google Scholar] [CrossRef]
- Córcoles, A.D.; Chow, J.M.; Gambetta, J.M.; Rigetti, C.; Rozen, J.R.; Keefe, G.A.; Beth Rothwell, M.; Ketchen, M.B.; Steffen, M. Protecting superconducting qubits from radiation. Appl. Phys. Lett. 2011, 99, 181906. [Google Scholar] [CrossRef]
- Catelani, G.; Schoelkopf, R.J.; Devoret, M.H.; Glazman, L.I. Relaxation and frequency shifts induced by quasiparticles in superconducting qubits. Phys. Rev. B 2011, 84, 064517. [Google Scholar] [CrossRef]
- Gustavsson, S.; Yan, F.; Catelani, G.; Bylander, J.; Kamal, A.; Birenbaum, J.; Hover, D.; Rosenberg, D.; Samach, G.; Sears, A.P.; et al. Suppressing relaxation in superconducting qubits by quasiparticle pumping. Science 2016, 354, 1573–1577. [Google Scholar] [CrossRef]
- Serniak, K.; Hays, M.; de Lange, G.; Diamond, S.; Shankar, S.; Burkhart, L.D.; Frunzio, L.; Houzet, M.; Devoret, M.H. Hot Nonequilibrium Quasiparticles in Transmon Qubits. Phys. Rev. Lett. 2018, 121, 157701. [Google Scholar] [CrossRef]
- Ristè, D.; Bultink, C.C.; Tiggelman, M.J.; Schouten, R.N.; Lehnert, K.W.; DiCarlo, L. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit. Nat. Commun. 2013, 4, 1913. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.Y.; Kamal, A.; Sears, A.P.; Gudmundsen, T.; Hover, D.; Miloshi, J.; Slattery, R.; Yan, F.; Yoder, J.; Orlando, T.P.; et al. Thermal and Residual Excited-State Population in a 3D Transmon Qubit. Phys. Rev. Lett. 2015, 114, 240501. [Google Scholar] [CrossRef] [PubMed]
- de Visser, P.J.; Goldie, D.J.; Diener, P.; Withington, S.; Baselmans, J.J.A.; Klapwijk, T.M. Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator. Phys. Rev. Lett. 2014, 112, 047004. [Google Scholar] [CrossRef] [PubMed]
- Lenander, M.; Wang, H.; Bialczak, R.C.; Lucero, E.; Mariantoni, M.; Neeley, M.; O’Connell, A.D.; Sank, D.; Weides, M.; Wenner, J.; et al. Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles. Phys. Rev. B 2011, 84, 024501. [Google Scholar] [CrossRef]
- Sun, L.; DiCarlo, L.; Reed, M.D.; Catelani, G.; Bishop, L.S.; Schuster, D.I.; Johnson, B.R.; Yang, G.A.; Frunzio, L.; Glazman, L.; et al. Measurements of Quasiparticle Tunneling Dynamics in a Band-Gap-Engineered Transmon Qubit. Phys. Rev. Lett. 2012, 108, 230509. [Google Scholar] [CrossRef]
- Nsanzineza, I.; Plourde, B.L.T. Trapping a Single Vortex and Reducing Quasiparticles in a Superconducting Resonator. Phys. Rev. Lett. 2014, 113, 117002. [Google Scholar] [CrossRef]
- Barends, R.; Wenner, J.; Lenander, M.; Chen, Y.; Bialczak, R.C.; Kelly, J.; Lucero, E.; O’Malley, P.; Mariantoni, M.; Sank, D.; et al. Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl. Phys. Lett. 2011, 99, 113507. [Google Scholar] [CrossRef]
- Catelani, G.; Basko, D.M. Non-equilibrium quasiparticles in superconducting circuits: Photons vs. phonons. SciPost Phys. 2019, 6, 13. [Google Scholar] [CrossRef]
- Wenner, J.; Yin, Y.; Lucero, E.; Barends, R.; Chen, Y.; Chiaro, B.; Kelly, J.; Lenander, M.; Mariantoni, M.; Megrant, A.; et al. Excitation of Superconducting Qubits from Hot Nonequilibrium Quasiparticles. Phys. Rev. Lett. 2013, 110, 150502. [Google Scholar] [CrossRef]
- Houzet, M.; Serniak, K.; Catelani, G.; Devoret, M.H.; Glazman, L.I. Photon-Assisted Charge-Parity Jumps in a Superconducting Qubit. Phys. Rev. Lett. 2019, 123, 107704. [Google Scholar] [CrossRef]
- Serniak, K.; Diamond, S.; Hays, M.; Fatemi, V.; Shankar, S.; Frunzio, L.; Schoelkopf, R.; Devoret, M. Direct Dispersive Monitoring of Charge Parity in Offset-Charge-Sensitive Transmons. Phys. Rev. Appl. 2019, 12, 014052. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gao, Y.Y.; Pop, I.M.; Vool, U.; Axline, C.; Brecht, T.; Heeres, R.W.; Frunzio, L.; Devoret, M.H.; Catelani, G.; et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 2014, 5, 5836. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.D.; DiCarlo, L.; Johnson, B.R.; Sun, L.; Schuster, D.I.; Frunzio, L.; Schoelkopf, R.J. High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity. Phys. Rev. Lett. 2010, 105, 173601. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, S.; Segall, K.; Gaidis, M.C.; Wilson, C.M.; Prober, D.E.; Szymkowiak, A.E.; Moseley, S.H. Experimental quasiparticle dynamics in a superconducting, imaging x-ray spectrometer. Appl. Phys. Lett. 1997, 71, 3901–3903. [Google Scholar] [CrossRef]
- Ullom, J.N.; Fisher, P.A.; Nahum, M. Magnetic field dependence of quasiparticle losses in a superconductor. Appl. Phys. Lett. 1998, 73, 2494–2496. [Google Scholar] [CrossRef]
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef]
- Bilmes, A.; Zanker, S.; Heimes, A.; Marthaler, M.; Schön, G.; Weiss, G.; Ustinov, A.V.; Lisenfeld, J. Electronic decoherence of two-level systems in a Josephson junction. Phys. Rev. B 2017, 96, 064504. [Google Scholar] [CrossRef]
- Rothwarf, A.; Taylor, B.N. Measurement of Recombination Lifetimes in Superconductors. Phys. Rev. Lett. 1967, 19, 27–30. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Li, Y.; Zheng, W.; Zhang, Y.; Ma, Z.; Tan, X.; Yu, Y. Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit. Appl. Sci. 2022, 12, 8461. https://doi.org/10.3390/app12178461
Dong Y, Li Y, Zheng W, Zhang Y, Ma Z, Tan X, Yu Y. Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit. Applied Sciences. 2022; 12(17):8461. https://doi.org/10.3390/app12178461
Chicago/Turabian StyleDong, Yuqian, Yong Li, Wen Zheng, Yu Zhang, Zhuang Ma, Xinsheng Tan, and Yang Yu. 2022. "Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit" Applied Sciences 12, no. 17: 8461. https://doi.org/10.3390/app12178461
APA StyleDong, Y., Li, Y., Zheng, W., Zhang, Y., Ma, Z., Tan, X., & Yu, Y. (2022). Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit. Applied Sciences, 12(17), 8461. https://doi.org/10.3390/app12178461