Broadband Dielectric Characterization of High-Permittivity Rogers Substrates via Terahertz Time-Domain Spectroscopy in Reflection Mode
Abstract
:1. Introduction
2. Terahertz Time-Domain Spectroscopy of High-Permittivity Substrates
2.1. Materials
2.2. Methods
2.3. Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.J.; Liu, X.L. W-band characterizations of printed circuit board based on substrate integrated waveguide multi-resonator method. IEEE Trans. Microw. Theory Tech. 2016, 64, 599–606. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.; Alkhafaji, M.K.; Alhamadani, H.A.; Ojaroudi Parchin, N.; Elfergani, I.; Saleh, A.L.; Rodriguez, J.; Abd-Alhameed, R.A. A new and compact wide-band microstrip filter-antenna design for 2.4 GHz ISM band and 4G applications. Electronics 2020, 9, 1084. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Pirrone, D.; Ferraro, A.; Zografopoulos, D.C.; Fuscaldo, W.; Szriftgiserand, P.; Ducournau, G.; Beccherelli, R. Metasurface-based Filters for High Data Rate THz Wireless Communications: Experimental Validation of a 14 Gbps OOK and 104 Gbps QAM-16 Wireless Link in the 300 GHz band. IEEE Trans. Wirel. Commun. 2022. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Xing, Y.; Rappaport, T.S. Terahertz wireless communications: Co-sharing for terrestrial and satellite systems above 100 GHz. IEEE Commun. Lett. 2021, 25, 3156–3160. [Google Scholar] [CrossRef]
- IEEE Standard for High Data Rate Wireless Multi-Media Networks–Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical Layer in IEEE Std 802.15.3d-2017, (Amendment to IEEE Std 802.15.3-2016 as amended by IEEE Std 802.15.3e-2017); IEEE: Piscataway, NJ, USA, 2017; pp. 1–55.
- Zhu, H.T.; Liu, D.; Hu, J.; Li, S.; Shi, S.C.; Xue, Q.; Che, W. Low-Loss, Thermally Insulating, and Flexible Rectangular Dielectric Waveguide for Sub-THz—Signal Coupling in Superconducting Receivers. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 190–199. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Y.; Navarro-Cia, M.; Liu, F.; Zhang, F.; Liu, Z.; Li, Y.; Hanham, S.M.; Hao, Z. The dielectric properties of some ceramic substrate materials at terahertz frequencies. J. Eur. Ceram. Soc. 2019, 39, 4424–4428. [Google Scholar] [CrossRef]
- Ruan, X.; Chan, C.H. Terahertz free-space dielectric property measurements using time- and frequency-domain setups. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21839. [Google Scholar] [CrossRef]
- Hejase, J.A.; Paladhi, P.R.; Chahal, P.P. Terahertz Characterization of Dielectric Substrates for Component Design and Nondestructive Evaluation of Packages. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 1685–1694. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [PubMed]
- Withayachumnankul, W.; Naftaly, M. Fundamentals of Measurement in Terahertz Time-Domain Spectroscopy. J. Infrared Millim. Terahertz Waves 2013, 35, 610–637. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Jensen, J.K.; Møller, U. Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy. Opt. Express 2008, 16, 9318. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, D.M.A.; Whelan, P.R.; Bøggild, P.; Jepsen, P.U.; Redo-Sanchez, A.; Etayo, D.; Fabricius, N.; Petersen, D.H. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt. Express 2018, 26, 9220. [Google Scholar] [CrossRef] [PubMed]
- Ahi, K.; Shahbazmohamadi, S.; Asadizanjani, N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng. 2018, 104, 274–284. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Simone, S.D.; Dimitrov, D.; Marinova, V.; Mussi, V.; Beccherelli, R.; Zografopoulos, D.C. Terahertz characterization of graphene conductivity via time-domain reflection spectroscopy on metal-backed dielectric substrates. J. Phys. D Appl. Phys. 2022, 55, 365101. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Tofani, S.; Zografopoulos, D.C.; Baccarelli, P.; Burghignoli, P.; Beccherelli, R.; Galli, A. Systematic Design of THz Leaky-Wave Antennas based on Homogenized Metasurfaces. IEEE Trans. Antennas Propag. 2018, 66, 1169–1178. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A. Graphene Fabry-Perot Cavity Leaky-Wave Antennas: Plasmonic Versus Nonplasmonic Solutions. IEEE Trans. Antennas Propag. 2017, 65, 1651–1660. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Galli, A. The Transition Between Reactive and Radiative Regimes for Leaky Modes in Planar Waveguides Based on Homogenized Partially Reflecting Surfaces. IEEE Trans. Microw. Theory Tech. 2020, 68, 5259–5269. [Google Scholar] [CrossRef]
- Isić, G.; Vasić, B.; Zografopoulos, D.C.; Beccherelli, R.; Gajić, R. Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals. Phys. Rev. Appl. 2015, 3, 064007. [Google Scholar] [CrossRef]
- Astorino, M.D.; Fastampa, R.; Frezza, F.; Maiolo, L.; Marrani, M.; Missori, M.; Muzi, M.; Tedeschi, N.; Veroli, A. Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber. Sci. Rep. 2018, 8, 1985. [Google Scholar] [CrossRef] [PubMed]
- Vasic, B.; Isic, G.; Beccherelli, R.; Zografopoulos, D.C. Tunable Beam Steering at Terahertz Frequencies Using Reconfigurable Metasurfaces Coupled With Liquid Crystals. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–9. [Google Scholar] [CrossRef]
- Rogers Corporation. Advanced Electronic Solutions, RF Solutions Laminates and 3D Printable Materials. Available online: https://rogerscorp.com/advanced-electronics-solutions (accessed on 17 June 2022).
- Balanis, C.A. Advanced Engineering Electromagnetics; Wiley Online Library: Hoboken, NJ, USA, 2012; Volume 111. [Google Scholar]
- Zografopoulos, D.C.; Prokopidis, K.P.; Dąbrowski, R.; Beccherelli, R. Time-domain modeling of dispersive and lossy liquid-crystals for terahertz applications. Opt. Mater. Express 2014, 4, 449. [Google Scholar] [CrossRef]
- Prokopidis, K.P.; Zografopoulos, D.C. Time-Domain Studies of General Dispersive Anisotropic Media by the Complex-Conjugate Pole–Residue Pairs Model. Appl. Sci. 2021, 11, 3844. [Google Scholar] [CrossRef]
- TOPTICA Photonics, A.G. TeraFlash Pro, Versatile Time-Domain Terahertz Platform. Available online: https://www.toptica.com/products/terahertz-systems/time-domain/teraflash-pro (accessed on 19 June 2022).
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Burghignoli, P.; Fuscaldo, W.; Galli, A. Fabry–Perot Cavity Antennas: The Leaky-Wave Perspective [Electromagnetic Perspectives]. IEEE Antennas Propag. Mag. 2021, 63, 116–145. [Google Scholar] [CrossRef]
- Mrnka, M.; Appleby, R.; Saenz, E. Accurate S-Parameter Modeling and Material Characterization in Quasi-Optical Systems. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 199–210. [Google Scholar] [CrossRef]
Name | Composition | Thickness (mm) | tan | |
---|---|---|---|---|
RO3010 | Ceramic-filled PTFE composites | |||
RT/duroid 6010.2LM | Ceramic-filled PTFE composites | |||
TMM10i | Ceramic, hydrocarbon, thermoset polymer composites |
Name | (THz) | (ps) | ||
---|---|---|---|---|
RO3010 | ||||
RT/duroid 6010.2LM | ||||
TMM10i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuscaldo, W.; Maita, F.; Maiolo, L.; Beccherelli, R.; Zografopoulos, D.C. Broadband Dielectric Characterization of High-Permittivity Rogers Substrates via Terahertz Time-Domain Spectroscopy in Reflection Mode. Appl. Sci. 2022, 12, 8259. https://doi.org/10.3390/app12168259
Fuscaldo W, Maita F, Maiolo L, Beccherelli R, Zografopoulos DC. Broadband Dielectric Characterization of High-Permittivity Rogers Substrates via Terahertz Time-Domain Spectroscopy in Reflection Mode. Applied Sciences. 2022; 12(16):8259. https://doi.org/10.3390/app12168259
Chicago/Turabian StyleFuscaldo, Walter, Francesco Maita, Luca Maiolo, Romeo Beccherelli, and Dimitrios C. Zografopoulos. 2022. "Broadband Dielectric Characterization of High-Permittivity Rogers Substrates via Terahertz Time-Domain Spectroscopy in Reflection Mode" Applied Sciences 12, no. 16: 8259. https://doi.org/10.3390/app12168259
APA StyleFuscaldo, W., Maita, F., Maiolo, L., Beccherelli, R., & Zografopoulos, D. C. (2022). Broadband Dielectric Characterization of High-Permittivity Rogers Substrates via Terahertz Time-Domain Spectroscopy in Reflection Mode. Applied Sciences, 12(16), 8259. https://doi.org/10.3390/app12168259