Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Design
2.2. Preprocessing and Feature Extraction
2.3. Drowsiness Detection
2.4. Sex Classification Model
3. Results
3.1. Improvement of Drowsiness Detection with Addition of Sex as a Feature
3.2. Model for Sex Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ledger, S.; Bennett, J.M.; Chekaluk, E.; Batchelor, J.; Di Meco, A. Cognitive function and driving in middle adulthood: Does age matter? Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 471–484. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Cao, Z.; King, J.-T.; Wu, B.-S.; Wang, Y.; Lin, C.-T. Brain Electrodynamic and Hemodynamic Signatures against Fatigue during Driving. Front. Neurosci. 2018, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- National Highway Traffic Safety Administration. Drowsy Driving 2015; National Highway Traffic Safety Administration: Washington, DC, USA, 2017. [Google Scholar]
- Owens, J.M.; Dingus, T.A.; Guo, F.; Fang, Y.; Perez, M.; McClafferty, J.; Tefft, B. Prevalence of Drowsy Driving Crashes: Estimates from a Large-Scale Naturalistic Driving Study; Foundation for Traffic Safety: Washington, DC, USA, 2018. [Google Scholar]
- European Commision. Commision Delegated Regulation (EU) 2021/1341; Official Journal of the European Union; European Commision: Brussels, Belgium, 2021. [Google Scholar]
- Albadawi, Y.; Takruri, M.; Awad, M. A Review of Recent Developments in Driver Drowsiness Detection Systems. Sensors 2022, 22, 2069. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Shankaran, R.; Kavakli, M.; Haque, M. Sensor Applications and Physiological Features in Drivers’ Drowsiness Detection: A Review. IEEE Sens. J. 2018, 18, 3055–3067. [Google Scholar] [CrossRef]
- Burlacu, A.; Brinza, C.; Brezulianu, A.; Covic, A. Accurate and early detection of sleepiness, fatigue and stress levels in drivers through Heart Rate Variability parameters: A systematic review. Rev. Cardiovasc. Med. 2021, 22, 845–852. [Google Scholar] [CrossRef]
- Siddiqui, H.; Saleem, A.; Brown, R.; Bademci, B.; Lee, E.; Rustam, F.; Dudley, S. Non-Invasive Driver Drowsiness Detection System. Sensors 2021, 21, 4833. [Google Scholar] [CrossRef]
- Gielen, J.; Aerts, J.-M. Feature Extraction and Evaluation for Driver Drowsiness Detection Based on Thermoregulation. Appl. Sci. 2019, 9, 3555. [Google Scholar] [CrossRef]
- Tian, Y.; Cao, J. Fatigue driving detection based on electrooculography: A review. EURASIP J. Image Video Process. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Johnson, R.R.; Popovic, D.P.; Olmstead, R.E.; Stikic, M.; Levendowski, D.J.; Berka, C. Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model. Biol. Psychol. 2011, 87, 241–250. [Google Scholar] [CrossRef]
- Stancin, I.; Cifrek, M.; Jovic, A. A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef]
- Tran, Y.; Craig, A.; Craig, R.; Chai, R.; Nguyen, H. The influence of mental fatigue on brain activity: Evidence from a systematic review with meta-analyses. Psychophysiology 2020, 57, e13554. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.K.; Craig, A. A critical review of the psychophysiology of driver fatigue. Biol. Psychol. 2001, 55, 173–194. [Google Scholar] [CrossRef]
- Stancin, I.; Frid, N.; Cifrek, M.; Jovic, A. EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization. Sensors 2021, 21, 6932. [Google Scholar] [CrossRef]
- Soares, S.; Monteiro, T.; Lobo, A.; Couto, A.; Cunha, L.; Ferreira, S. Analyzing Driver Drowsiness: From Causes to Effects. Sustainability 2020, 12, 1971. [Google Scholar] [CrossRef]
- Tonetti, L.; Fabbri, M.; Natale, V. Sex Difference in Sleep-Time Preference and Sleep Need: A Cross-Sectional Survey among Italian Pre-Adolescents, Adolescents, and Adults. Chronobiol. Int. 2008, 25, 745–759. [Google Scholar] [CrossRef]
- Corsi-Cabrera, M.; Sánchez, A.I.; Del-Rı#xo-Portilla, Y.; Villanueva, Y.; Pérez-Garci, E. Effect of 38 h of total sleep deprivation on the waking EEG in women: Sex differences. Int. J. Psychophysiol. 2003, 50, 213–224. [Google Scholar] [CrossRef]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2012, 44, 58–75. [Google Scholar] [CrossRef]
- Chen, L.-L.; Zhao, Y.; Zhang, J.; Zou, J.-Z. Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 2015, 42, 7344–7355. [Google Scholar] [CrossRef]
- Cai, Q.; Gao, Z.-K.; Yang, Y.-X.; Dang, W.-D.; Grebogi, C. Multiplex Limited Penetrable Horizontal Visibility Graph from EEG Signals for Driver Fatigue Detection. Int. J. Neural Syst. 2019, 29, 1850057. [Google Scholar] [CrossRef]
- Min, J.; Wang, P.; Hu, J. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. PLoS ONE 2017, 12, e0188756. [Google Scholar] [CrossRef]
- Nguyen, T.; Ahn, S.; Jang, H.; Jun, S.C.; Kim, J.G. Utilization of a combined EEG/NIRS system to predict driver drowsiness. Sci. Rep. 2017, 7, 43933. [Google Scholar] [CrossRef]
- Lin, C.-T.; King, J.-T.; Chuang, C.-H.; Ding, W.; Chuang, W.-Y.; Liao, L.-D.; Wang, Y. Exploring the Brain Responses to Driving Fatigue through Simultaneous EEG and fNIRS Measurements. Int. J. Neural Syst. 2019, 30, 1950018. [Google Scholar] [CrossRef] [PubMed]
- Stancin, I.; Friganovic, K.; Zeba, M.Z.; Jovic, A.; Cifrek, M. Gender Differences in EEG Features While Driving. In Proceedings of the 2nd International Conference on Advances in Signal Processing and Artificial Intelligence, Berlin, Germany, 30 June–2 July 2020; pp. 125–130. [Google Scholar]
- Chen, J.; Wang, H.; Wang, Q.; Hua, C. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Neuropsychologia 2019, 129, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, H.; Hua, C. Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine. Cogn. Syst. Res. 2018, 52, 715–728. [Google Scholar] [CrossRef]
- Hu, J.; Min, J. Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cogn. Neurodynamics 2018, 12, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Wang, H.; Sgarbas, K.; Thakor, N.; Bezerianos, A.; Sun, Y. Functional Connectivity Analysis of Mental Fatigue Reveals Different Network Topological Alterations between Driving and Vigilance Tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 740–749. [Google Scholar] [CrossRef]
- Makeig, S.; Bell, A.J.; Jung, T.-P.; Sejnowski, T.J. Independent Component Analysis of Electroencephalographic Data. In Proceedings of the 8th International Conference on Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1995; pp. 145–151. [Google Scholar]
- Bell, A.J.; Sejnowski, T.J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Thomson, D.J. Spectrum estimation and harmonic analysis. Proc. IEEE 1982, 70, 1055–1096. [Google Scholar] [CrossRef]
- Shabani, H.; Mikaili, M.; Noori, S.M.R. Assessment of recurrence quantification analysis (RQA) of EEG for development of a novel drowsiness detection system. Biomed. Eng. Lett. 2016, 6, 196–204. [Google Scholar] [CrossRef]
- Webber, C.; Zbilut, J. Recurrence Quantification Analysis of Nonlinear Dynamical Systems. In Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences; National Science Foundation: Alexandria, VA, USA, 2005. [Google Scholar]
- Acharya, U.R.; Sree, S.V.; Chattopadhyay, S.; Yu, W.; Ang, P.C.A. Application of recurrence quantification analysis for the automated identification of epileptic eeg signals. Int. J. Neural Syst. 2011, 21, 199–211. [Google Scholar] [CrossRef]
- Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Eur. Lett. 1987, 4, 973–977. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, D.; Roy, P.P. Age and gender classification using brain–computer interface. Neural Comput. Appl. 2018, 31, 5887–5900. [Google Scholar] [CrossRef]
- Kaushik, P.; Gupta, A.; Roy, P.P.; Dogra, D.P. EEG-Based Age and Gender Prediction Using Deep BLSTM-LSTM Network Model. IEEE Sens. J. 2018, 19, 2634–2641. [Google Scholar] [CrossRef]
- Chaabene, S.; Bouaziz, B.; Boudaya, A.; Hökelmann, A.; Ammar, A.; Chaari, L. Convolutional Neural Network for Drowsiness Detection Using EEG Signals. Sensors 2021, 21, 1734. [Google Scholar] [CrossRef] [PubMed]
- Ko, L.-W.; Komarov, O.; Lai, W.-K.; Liang, W.-G.; Jung, T.-P. Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. J. Neural Eng. 2020, 17, 036015. [Google Scholar] [CrossRef] [PubMed]
- Shahbakhti, M.; Beiramvand, M.; Rejer, I.; Augustyniak, P.; Broniec-Wojcik, A.; Wierzchon, M.; Marozas, V. Simultaneous Eye Blink Characterization and Elimination from Low-Channel Prefrontal EEG Signals Enhances Driver Drowsiness Detection. IEEE J. Biomed. Health Inform. 2021, 26, 1001–1012. [Google Scholar] [CrossRef]
Male | Female | |
---|---|---|
Alertness | 17 | 17 |
Drowsiness | 17 | 17 |
Region | Channels |
---|---|
Front left (FL) | F7, F3, FC5, FC1, T7 |
Front right (FR) | F8, F4, FC6, FC2, T8 |
Occipital left (OL) | O1, P7, P3, CP5, CP1 |
Occipital right (OR) | O2, P4, P8, CP6, CP2 |
XGBoost | |
Eta—{0.1, 0.3, 0.4, 0.9} | reg_alpha—{0, 0.5} |
gamma—{0, 1, 5} | reg_lambda—{0.5, 1} |
learning_rate—{0.05, 0.1, 0.5, 1} | |
Random Forest | |
n_estimators—{30, 100, 200, 500} | |
min_samles_split—{2, 4, 6} | |
Support Vector Machine | |
C—{0.5, 1, 10} | kernel—{linear, rbf} |
Without Sex Information | |||
Precision | Recall | Accuracy | |
Alertness | 0.81 | 0.82 | 0.81 |
Drowsiness | 0.82 | 0.80 | |
With sex information | |||
Precision | Recall | Accuracy | |
Alertness | 0.81 | 0.83 | 0.82 |
Drowsiness | 0.82 | 0.81 | |
Only male drivers | |||
Precision | Recall | Accuracy | |
Alertness | 0.82 | 0.86 | 0.84 |
Drowsiness | 0.86 | 0.82 | |
Only female drivers | |||
Precision | Recall | Accuracy | |
Alertness | 0.87 | 0.89 | 0.88 |
Drowsiness | 0.89 | 0.87 |
Participant | Accuracy | Target Class | Correctly Classified | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Run1 | Run2 | Run3 | Run4 | Run5 | Avg | Run1 | Run2 | Run3 | Run4 | Run5 | Avg | ||
1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 0.67 | 1.00 | 1.00 | 0.67 | 1.00 | 0.87 | M | 1 | 1 | 1 | 1 | 1 | 1 |
5 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
6 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
7 | 0.67 | 1.00 | 1.00 | 1.00 | 1.00 | 0.93 | M | 1 | 1 | 1 | 1 | 1 | 1 |
8 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
9 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
11 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
12 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
13 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
14 | 1.00 | 1.00 | 0.67 | 1.00 | 1.00 | 0.93 | M | 1 | 1 | 1 | 1 | 1 | 1 |
15 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.93 | M | 1 | 1 | 1 | 1 | 1 | 1 |
16 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
17 | 1.00 | 1.00 | 0.67 | 0.67 | 0.67 | 0.80 | F | 1 | 1 | 1 | 1 | 1 | 1 |
18 | 1.00 | 1.00 | 0.67 | 0.67 | 1.00 | 0.87 | M | 1 | 1 | 1 | 1 | 1 | 1 |
19 | 1.00 | 1.00 | 1.00 | 0.67 | 1.00 | 0.93 | F | 1 | 1 | 1 | 1 | 1 | 1 |
20 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
22 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
23 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
24 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
25 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
26 | 0.67 | 0.67 | 1.00 | 1.00 | 0.67 | 0.80 | M | 1 | 1 | 1 | 1 | 1 | 1 |
27 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
28 | 1.00 | 0.67 | 0.67 | 1.00 | 1.00 | 0.87 | M | 1 | 1 | 1 | 1 | 1 | 1 |
29 | 0.33 | 0.67 | 0.67 | 1.00 | 0.67 | 0.67 | M | 0 | 1 | 1 | 1 | 1 | 0.8 |
30 | 0.33 | 0.33 | 1.00 | 0.67 | 0.67 | 0.60 | F | 0 | 0 | 1 | 1 | 1 | 0.6 |
31 | 1.00 | 0.67 | 0.67 | 0.67 | 0.67 | 0.73 | F | 1 | 1 | 1 | 1 | 1 | 1 |
32 | 1.00 | 1.00 | 0.33 | 0.33 | 1.00 | 0.73 | F | 1 | 1 | 0 | 0 | 1 | 0.6 |
33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
34 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
Average: | 0.93 | 0.94 | 0.92 | 0.92 | 0.94 | 0.93 | Sum: | 32 | 33 | 33 | 33 | 34 | 33 |
Accuracy: | 0.94 | 0.97 | 0.97 | 0.97 | 1.00 | 0.97 |
Participant | Accuracy | Target Class | Correctly Classified | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Run1 | Run2 | Run3 | Run4 | Run5 | Avg | Run1 | Run2 | Run3 | Run4 | Run5 | Avg | ||
1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 0.67 | 1.00 | 0.33 | 1.00 | 0.67 | 0.73 | F | 1 | 1 | 0 | 1 | 1 | 0.8 |
3 | 1.00 | 1.00 | 0.67 | 1.00 | 1.00 | 0.93 | F | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
5 | 1.00 | 0.67 | 1.00 | 0.67 | 0.67 | 0.80 | M | 1 | 1 | 1 | 1 | 1 | 1 |
6 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.93 | M | 1 | 1 | 1 | 1 | 1 | 1 |
7 | 1.00 | 0.67 | 1.00 | 1.00 | 0.67 | 0.87 | F | 1 | 1 | 1 | 1 | 1 | 1 |
8 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
9 | 1.00 | 1.00 | 0.67 | 1.00 | 1.00 | 0.93 | F | 1 | 1 | 1 | 1 | 1 | 1 |
10 | 0.67 | 1.00 | 1.00 | 0.67 | 0.67 | 0.80 | M | 1 | 1 | 1 | 1 | 1 | 1 |
11 | 0.33 | 1.00 | 0.33 | 1.00 | 0.67 | 0.67 | M | 0 | 1 | 0 | 1 | 1 | 0.6 |
12 | 1.00 | 1.00 | 0.67 | 1.00 | 0.67 | 0.87 | M | 1 | 1 | 1 | 1 | 1 | 1 |
13 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
14 | 1.00 | 1.00 | 1.00 | 0.67 | 1.00 | 0.93 | F | 1 | 1 | 1 | 1 | 1 | 1 |
15 | 0.67 | 1.00 | 1.00 | 0.67 | 0.67 | 0.80 | M | 1 | 1 | 1 | 1 | 1 | 1 |
16 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
17 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
18 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
19 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
20 | 0.67 | 0.67 | 0.67 | 1.00 | 0.33 | 0.67 | F | 1 | 1 | 1 | 1 | 0 | 0.8 |
21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
22 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
23 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
24 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
25 | 0.67 | 0.67 | 1.00 | 0.33 | 1.00 | 0.73 | M | 1 | 1 | 1 | 0 | 1 | 0.8 |
26 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
27 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
28 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
29 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
30 | 1.00 | 0.67 | 0.33 | 1.00 | 0.67 | 0.73 | F | 1 | 1 | 0 | 1 | 1 | 0.8 |
31 | 1.00 | 0.67 | 1.00 | 1.00 | 1.00 | 0.93 | F | 1 | 1 | 1 | 1 | 1 | 1 |
32 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | M | 1 | 1 | 1 | 1 | 1 | 1 |
33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
34 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | F | 1 | 1 | 1 | 1 | 1 | 1 |
Average: | 0.93 | 0.94 | 0.90 | 0.94 | 0.89 | 0.92 | Sum: | 33 | 34 | 31 | 33 | 33 | 32.8 |
Accuracy: | 0.97 | 1.00 | 0.91 | 0.97 | 0.97 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stancin, I.; Zeba, M.Z.; Friganovic, K.; Cifrek, M.; Jovic, A. Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model. Appl. Sci. 2022, 12, 8146. https://doi.org/10.3390/app12168146
Stancin I, Zeba MZ, Friganovic K, Cifrek M, Jovic A. Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model. Applied Sciences. 2022; 12(16):8146. https://doi.org/10.3390/app12168146
Chicago/Turabian StyleStancin, Igor, Mirta Zelenika Zeba, Kresimir Friganovic, Mario Cifrek, and Alan Jovic. 2022. "Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model" Applied Sciences 12, no. 16: 8146. https://doi.org/10.3390/app12168146
APA StyleStancin, I., Zeba, M. Z., Friganovic, K., Cifrek, M., & Jovic, A. (2022). Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model. Applied Sciences, 12(16), 8146. https://doi.org/10.3390/app12168146