An Umbrella Review on Low-Abrasive Air Powder Water Jet Technology in Periodontitis and Peri-Implantitis Patients
Abstract
:1. Introduction
2. Materials and Methods
- Does low-abrasive (glycine, erythritol or trehalose powder) APWJT have a beneficial effect on clinical parameters (PPD, BOP, gingival recessions, CAL) as compared to standard mechanical debridement in active or supportive periodontal and peri-implantitis therapy?
- Can low-abrasive APWJT powders be used in the active or supportive treatment phase alone or in combination with other treatment measures?
Screening and Selection
3. Results
3.1. Active Periodontal Treatment
3.2. Supportive Periodontal Treatment
3.3. Active Peri-Implant Mucositis/Peri-Implantitis Therapy
3.3.1. Active Peri-Implant Mucositis
3.3.2. Active Peri-Implantitis Therapy
3.3.3. Supportive Peri-Implant Therapy and Maintenance
4. Discussion
5. Conclusions
- Further clinical trials with a long-term follow up testing APWJT as a standalone therapy for supportive periodontal therapy and for the treatment of peri-implant mucositis are needed.
- More studies exclusively evaluating the adjunctive effect of APWJT during the surgical treatment of peri-implantitis are needed.
- Further clinical trials are necessary to investigate cost-effectiveness for dental practitioners and patients.
- An updated meta-analysis focusing only on APWJT compared with conventional measures would be needed.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Author | Funding |
---|---|
Abdulbaqi et al. [37] | Self-funded by the authors’ own departments. |
Tan et al. [38] | Research University Grant (RU Faculty), Universiti Malaya, Grant No.: GPF007E-2019 |
Boeira et al. [39] | Coordenação de Aperfeiçaomento de Pessoal de Nivel Superior—Brasil (CAPES) [Finance Code 001]; The Brazilian National Research Council (CNPq); National Council for Scientific and Technological Development (CAPES). |
Nascimento et al. [40] | CAPES (Coordination for the Improvement of Higher Education Personnel—Brazilian Ministry of Education) [Finance Code 001]; CNPq (Council for Scientific and Technological Development—Brazilian Ministry of Science, Technology and Innovation) [Finance Code 307808/2018-1]. |
Ramanauskaite et al. [41] | Self-funded by the authors’ own departments. |
Zhu et al. [42] | Program for Innovation Team Building at Institutions of Higher Education in Chongqing in 2016 (grant no. CXTDG201602006) and the Natural Science Foundation of Chongqing (2015msxm055). |
Zhang et al. [43] | Nanjing Medical Science and Technique Development Foundation (QRX17176). |
Ng et al. [44] | Self-funded by the authors and their institutions. |
Schwarz et al. [7] | The authors declare that they received an unrestricted grant from EMS, Nyon, Switzerland. The systematic review was self-funded by the authors and their institution. |
Muthukuru et al. [45] | Not available. Declaration of no conflict of interest. |
References
- Petersilka, G.J.; Bell, M.; Haberlein, I.; Mehl, A.; Hickel, R.; Flemmig, T.F. In vitro evaluation of novel low abrasive air polishing powders. J. Clin. Periodontol. 2003, 30, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Moene, R.; Decaillet, F.; Andersen, E.; Mombelli, A. Subgingival plaque removal using a new air-polishing device. J. Periodontol. 2010, 81, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Donnet, M.; Fournier, M.; Schmidlin, P.R.; Lussi, A. A Novel Method to Measure the Powder Consumption of Dental Air-Polishing Devices. Appl. Sci. 2021, 11, 1101. [Google Scholar] [CrossRef]
- Furrer, C.; Battig, R.; Votta, I.; Bastendorf, K.D.; Schmidlin, P.R. Patient acceptance of ≪Guided Biofilm Therapy≫. Swiss. Dent. J. 2021, 131, 229–234. [Google Scholar]
- Mensi, M.; Scotti, E.; Sordillo, A.; Dale, M.; Calza, S. Clinical evaluation of air polishing with erythritol powder followed by ultrasonic calculus removal versus conventional ultrasonic debridement and rubber cup polishing for the treatment of gingivitis: A split-mouth randomized controlled clinical trial. Int. J. Dent. Hyg. 2021, 20, 371–380. [Google Scholar] [CrossRef]
- Cobb, C.M.; Daubert, D.M.; Davis, K.; Deming, J.; Flemmig, T.F.; Pattison, A.; Roulet, J.F.; Stambaugh, R.V. Consensus Conference Findings on Supragingival and Subgingival Air Polishing. Compend. Contin. Educ. Dent. 2017, 38, e1–e4. [Google Scholar]
- Schwarz, F.; Becker, K.; Renvert, S. Efficacy of air polishing for the non-surgical treatment of peri-implant diseases: A systematic review. J. Clin. Periodontol. 2015, 42, 951–959. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [Green Version]
- Bastendorf, K.D.; Strafela-Bastendorf, N.; Lussi, A. Mechanical Removal of the Biofilm: Is the Curette Still the Gold Standard? Monogr. Oral Sci. 2020, 29, 105–118. [Google Scholar]
- Karmakar, S.; Kamath, D.G. Subgingival airpolishing: A simple and cost effective medical insurance. J. Pharm. Sci. Res. 2017, 9, 199–201. [Google Scholar]
- Petersilka, G.J. Subgingival air-polishing in the treatment of periodontal biofilm infections. Periodontology 2000 2011, 55, 124–142. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Bastendorf, K.D.; Becker, C.; Bush, B.; Einwag, J.; Lanoway, C.; Platzer, U.; Schmage, P.; Schoeneich, B.; Walter, C.; et al. A paradigm shift in mechanical biofilm management? Subgingival air polishing: A new way to improve mechanical biofilm management in the dental practice. Quintessence Int. 2013, 44, 475–477. [Google Scholar] [PubMed]
- Froum, S.J.; Dagba, A.S.; Shi, Y.; Perez-Asenjo, A.; Rosen, P.S.; Wang, W.C. Successful Surgical Protocols in the Treatment of Peri-Implantitis: A Narrative Review of the Literature. Implant. Dent. 2016, 25, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Janaphan, K.; Hill, R.G.; Gillam, D. Air-Polishing in Subgingival Root Debridement during Supportive Periodontal Care: A Review. J. Orthod. Craniofac. Res. 2020, 2, 113. [Google Scholar] [CrossRef]
- Graumann, S.J.; Sensat, M.L.; Stoltenberg, J.L. Air polishing: A review of current literature. J. Dent. Hyg. 2013, 87, 173–180. [Google Scholar]
- Meyle, J. Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around implants. Eur. J. Oral Implantol. 2012, 5, S71–S81. [Google Scholar]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-implantitis update: Risk indicators, diagnosis, and treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef]
- Suarez, F.; Monje, A.; Galindo-Moreno, P.; Wang, H.L. Implant surface detoxification: A comprehensive review. Implant. Dent. 2013, 22, 465–473. [Google Scholar] [CrossRef]
- Tastepe, C.S.; van Waas, R.; Liu, Y.; Wismeijer, D. Air powder abrasive treatment as an implant surface cleaning method: A literature review. Int. J. Oral. Maxillofac. Implant. 2012, 27, 1461–1473. [Google Scholar]
- Daubert, D.M.; Weinstein, B.F. Biofilm as a risk factor in implant treatment. Periodontology 2000 2019, 81, 29–40. [Google Scholar] [CrossRef]
- Bomfeti, C.A.; Florentino, L.A.; Guimarães, A.P.; Cardoso, P.G.; Guerreiro, M.C.; Moreira, F.M.S. Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae. Rev. Bras. Cienc. Solo 2011, 35, 657–671. [Google Scholar] [CrossRef] [Green Version]
- de Cock, P.; Makinen, K.; Honkala, E.; Saag, M.; Kennepohl, E.; Eapen, A. Erythritol Is More Effective Than Xylitol and Sorbitol in Managing Oral Health Endpoints. Int. J. Dent. 2016, 2016, 9868421. [Google Scholar] [CrossRef] [PubMed]
- Volinskaia, T.B. Differential approach to air-abrasion powder choice in patients with periodontal disease. Stomatologiia 2013, 92, 27–32. [Google Scholar] [PubMed]
- Yilmaz, K.; Ozkan, P. The methods for the generation of smoothness in dental ceramics. Compend. Contin. Educ. Dent. 2010, 31, 30–32, 34, 36–38 passim; quiz 42, 44. [Google Scholar]
- Buhler, J.; Amato, M.; Weiger, R.; Walter, C. A systematic review on the effects of air polishing devices on oral tissues. Int. J. Dent. Hyg. 2016, 14, 15–28. [Google Scholar] [CrossRef]
- Moharrami, M.; Perrotti, V.; Iaculli, F.; Love, R.M.; Quaranta, A. Effects of air abrasive decontamination on titanium surfaces: A systematic review of in vitro studies. Clin. Implant. Dent. Relat. Res. 2019, 21, 398–421. [Google Scholar] [CrossRef]
- Louropoulou, A.; Slot, D.E.; Van der Weijden, F. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: A systematic review. Clin. Oral. Implant. Res. 2015, 26, 841–850. [Google Scholar] [CrossRef]
- Ogata, K. A review: Recent progress on evaluation of flowability and floodability of powder. KONA Powder Part. J. 2019, 36, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tan, N.C.P.; Khan, A.; Antunes, E.; Miller, C.M.; Sharma, D. The effects of physical decontamination methods on zirconia implant surfaces: A systematic review. J. Periodontal. Implant. Sci. 2021, 51, 298–315. [Google Scholar] [CrossRef]
- Buhler, J.; Amato, M.; Weiger, R.; Walter, C. A systematic review on the patient perception of periodontal treatment using air polishing devices. Int. J. Dent. Hyg. 2016, 14, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Ata-Ali, J.; Ata-Ali, F.; Galindo-Moreno, P. Treatment of periimplant mucositis: A systematic review of randomized controlled trials. Implant. Dent. 2015, 24, 13–18. [Google Scholar] [CrossRef]
- de Almeida, J.M.; Matheus, H.R.; Rodrigues Gusman, D.J.; Faleiros, P.L.; Januario de Araujo, N.; Noronha Novaes, V.C. Effectiveness of Mechanical Debridement Combined With Adjunctive Therapies for Nonsurgical Treatment of Periimplantitis: A Systematic Review. Implant. Dent. 2017, 26, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Schmucker, A.; Becker, J. Efficacy of alternative or adjunctive measures to conventional treatment of peri-implant mucositis and peri-implantitis: A systematic review and meta-analysis. Int. J. Implant. Dent. 2015, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taschieri, S.; Weinstein, R.; Del Fabbro, M.; Corbella, S. Erythritol-Enriched Air-Polishing Powder for the Surgical Treatment of Peri-Implantitis. Sci. World J. 2015, 2015, 802310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [Green Version]
- Abdulbaqi, H.R.; Shaikh, M.S.; Abdulkareem, A.A.; Zafar, M.S.; Gul, S.S.; Sha, A.M. Efficacy of erythritol powder air-polishing in active and supportive periodontal therapy: A systematic review and meta-analysis. Int. J. Dent. Hyg. 2022, 20, 62–74. [Google Scholar] [CrossRef]
- Tan, S.L.; Grewal, G.K.; Mohamed Nazari, N.S.; Mohd-Dom, T.N.; Baharuddin, N.A. Efficacy of air polishing in comparison with hand instruments and/or power-driven instruments in supportive periodontal therapy and implant maintenance: A systematic review and meta-analysis. BMC Oral. Health 2022, 22, 85. [Google Scholar] [CrossRef]
- Boeira, P.O.; dos Santos, C.S.; Kinalski, M.A.; Brondani, L.P.; Pereira-Cenci, T.; da Silveira Lima, G. Glycine air-polishing versus curette debridement for the treatment of peri-implant mucositis: A systematic review and meta-analysis. Dent. Rev. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Nascimento, G.G.; Leite, F.R.M.; Pennisi, P.R.C.; López, R.; Paranhos, L.R. Use of air polishing for supra- and subgingival biofilm removal for treatment of residual periodontal pockets and supportive periodontal care: A systematic review. Clin. Oral. Investig. 2021, 25, 779–795. [Google Scholar] [CrossRef]
- Ramanauskaite, A.; Fretwurst, T.; Schwarz, F. Efficacy of alternative or adjunctive measures to conventional non-surgical and surgical treatment of peri-implant mucositis and peri-implantitis: A systematic review and meta-analysis. Int. J. Implant. Dent. 2021, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhao, M.; Hu, B.; Wang, Y.; Li, Y.; Song, J. Efficacy of glycine powder air-polishing in supportive periodontal therapy: A systematic review and meta-analysis. J. Periodontal. Implant. Sci. 2021, 51, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Li, J.; Chen, B.; Li, H.; Yan, F. The Clinical Efficacy of Subgingival Debridement by Ultrasonic Instrumentation Compared With Subgingival Air Polishing During Periodontal Maintenance: A Systematic Review. J. Evid. Based Dent. Pract. 2019, 19, 101314. [Google Scholar] [CrossRef]
- Ng, E.; Byun, R.; Spahr, A.; Divnic-Resnik, T. The efficacy of air polishing devices in supportive periodontal therapy: A systematic review and meta-analysis. Quintessence Int. 2018, 49, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Muthukuru, M.; Zainvi, A.; Esplugues, E.O.; Flemmig, T.F. Non-surgical therapy for the management of peri-implantitis: A systematic review. Clin. Oral. Implant. Res. 2012, 23 (Suppl. 6), 77–83. [Google Scholar] [CrossRef]
- Ji, Y.J.; Tang, Z.H.; Wang, R.; Cao, J.; Cao, C.F.; Jin, L.J. Effect of glycine powder air-polishing as an adjunct in the treatment of peri-implant mucositis: A pilot clinical trial. Clin. Oral. Implant. Res. 2014, 25, 683–689. [Google Scholar] [CrossRef]
- De Siena, F.; Corbella, S.; Taschieri, S.; Del Fabbro, M.; Francetti, L. Adjunctive glycine powder air-polishing for the treatment of peri-implant mucositis: An observational clinical trial. Int. J. Dent. Hyg. 2015, 13, 170–176. [Google Scholar] [CrossRef]
- Lasserre, J.F.; Brecx, M.C.; Toma, S. Implantoplasty Versus Glycine Air Abrasion for the Surgical Treatment of Peri-implantitis: A Randomized Clinical Trial. Int. J. Oral. Maxillofac. Implant. 2020, 35, 197–206. [Google Scholar] [CrossRef]
- Toma, S.; Brecx, M.C.; Lasserre, J.F. Clinical Evaluation of Three Surgical Modalities in the Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J. Clin. Med. 2019, 8, 966. [Google Scholar] [CrossRef] [Green Version]
- Sahm, N.; Becker, J.; Santel, T.; Schwarz, F. Non-surgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: A prospective, randomized, controlled clinical study. J. Clin. Periodontol. 2011, 38, 872–878. [Google Scholar] [CrossRef]
- John, G.; Sahm, N.; Becker, J.; Schwarz, F. Nonsurgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine. Twelve-month follow-up of a prospective, randomized, controlled clinical study. Clin. Oral. Investig. 2015, 19, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Lindahl, C.; Roos Jansaker, A.M.; Persson, G.R. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: A randomized clinical trial. J. Clin. Periodontol. 2011, 38, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Tsang, Y.C.; Corbet, E.F.; Jin, L.J. Subgingival glycine powder air-polishing as an additional approach to nonsurgical periodontal therapy in subjects with untreated chronic periodontitis. J. Periodontal. Res. 2018, 53, 440–445. [Google Scholar] [CrossRef]
- Mensi, M.; Scotti, E.; Sordillo, A.; Calza, S.; Guarnelli, M.E.; Fabbri, C.; Farina, R.; Trombelli, L. Efficacy of the additional use of subgingival air polishing with erythritol powder in the treatment of periodontitis patients: A randomized controlled clinical trial. Clin. Oral. Investig. 2021, 25, 729–736. [Google Scholar] [CrossRef]
- Jentsch, H.F.R.; Flechsig, C.; Kette, B.; Eick, S. Adjunctive air-polishing with erythritol in nonsurgical periodontal therapy: A randomized clinical trial. BMC Oral. Health 2020, 20, 364. [Google Scholar] [CrossRef]
- Park, E.J.; Kwon, E.Y.; Kim, H.J.; Lee, J.Y.; Choi, J.; Joo, J.Y. Clinical and microbiological effects of the supplementary use of an erythritol powder air-polishing device in non-surgical periodontal therapy: A randomized clinical trial. J. Periodontal. Implant. Sci. 2018, 48, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.; Agrawal, A.; Abullais, S.S.; Arora, S.; Khateeb, S.U.; Fadul, A.E.M. Effectiveness of Different Chemotherapeutic Agents for Decontamination of Infected Dental Implant Surface: A Systematic Review. Antibiotics 2022, 11, 593. [Google Scholar] [CrossRef]
- Soldatos, N.; Romanos, G.E.; Michaiel, M.; Sajadi, A.; Angelov, N.; Weltman, R. Management of Retrograde Peri-Implantitis Using an Air-Abrasive Device, Er,Cr:YSGG Laser, and Guided Bone Regeneration. Case Rep. Dent. 2018, 2018, 7283240. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.H.; Wong, L.B.; Tong, H.J.; Sim, Y.F. Conventional versus comprehensive dental prophylaxis: Comparing the clinical outcomes between rubber cup and air polishing and the importance of plaque disclosure. Quintessence Int. 2021, 52, 264–274. [Google Scholar]
Author | Year | No. of Included Studies | Meta-Analysis | Type of Included Studies | Follow-Up |
---|---|---|---|---|---|
Abdulbaqi et al. [37] | 2022 | 8 | Yes | RCT, CT | 3 m–12 m |
Tan et al. [38] | 2022 | 6 | Yes | RCT | 6 m–12 m |
Boeira et al. [39] | 2021 | 7 | Yes | RCT, CT | 3 m–12 m |
Nascimento et al. [40] | 2021 | 13 | No | RCT | 1 w–12 m |
Ramanauskaite et al. [41] | 2021 | 80 | Yes | RCT, CT | 3 m–12 m |
Zhu et al. [42] | 2021 | 17 | Yes | RCT | 1 w–6 m |
Zhang et al. [43] | 2019 | 6 | No | RCT | 2 w–12 m |
Ng et al. [44] | 2018 | 8 | Yes | RCT, CT | 1 w–12 m |
Schwarz F & Renvert et al. [7] | 2015 | 5 | Yes | CT | 3 m–12 m |
Muthukuru et al. [45] | 2012 | 9 | No | RCT | 6 m–12 m |
Author | Year | Test Measures | Control Measures | Clinical Outcomes | Microbiological Outcomes | Patient-Related Outcomes |
---|---|---|---|---|---|---|
Abdulbaqi et al. [37] | 2022 | 1. EPAP + SRP (HI or US or HI/US) 2. SPPT + EPAP + SRP (HI/US) | 1. SRP (HI or US or HI/US) 2. SPPT + SRP (HI/US) | M-a APT (N = 4) PPD red: ↑ (0.03 mm, WMD; p = 0.71) BOP: ↑ (−0.62%,WMD; p = 0.67) Rec: n.a. CAL: ↑* (0.16 mm, WMD, p < 0.02) | (N = 5) = | No m-a available: Patient comfort (N = 3): =/↑ Working time (N = 0): n.a. Adverse effects (N = 0): n.a. |
Nascimento et al. [40] | 2021 | 1. GPAP (singular or + HI + US) 2. TPAP | HI or US or HI/US | No m-a available: PPD: = BOP: = Rec: n.a. CAL: = | (N = 7) = | No m-a available: Patient comfort (N = 7): ↑ Working time (N = 3): ↑ Adverse effects (N = 12): = |
Author | Year | Test Measures | Control Measures | Clinical Outcomes | Microbiological Outcomes | Patient-Related Outcomes |
---|---|---|---|---|---|---|
Abdulbaqi et al. [37] | 2022 | 1. EPAP + SRP (HI or US or HI/US) 2. SPPT + EPAP + SRP (HI/US) | 1. SRP (HI or US or HI/US) 2. SPPT + SRP (HI/US) | M-a SPT (N = 4) PPD red: ↑ (−0.04 mm, WMD, p = 0.78) BOP: ↑ (−2.11%, WMD, p = 0.41) Rec: n.a. CAL: ↑ (0.15 mm, WMD, p = 0.32) | (N = 5) = | No m-a available: Patient comfort (N = 3): ↑ Working time (N = 0): n.a. Adverse effects (N = 0): n.a. |
Tan et al. [38] | 2022 | 1. EPAP 2. GPAP 3. TPAP | HI US | M-a: PPD red (N = 4): ↑ (0.11, WMD, p = 0.08) BOP (N = 3): = Rec: n.a. CAL (N = 3): ↑ (0.08, WMD, p = 0.39) | (N = 0) n.a. | No m-a available: Patient comfort (N = 2): ↑ Working time (N = 0): n.a. Adverse effects (N = 0): n.a. |
Nascimento et al. [40] | 2021 | 1. GPAP (singular or + HI + US) 2. TPAP | HI or US or HI/US | No m-a available: PPD: = BOP: = Rec: n.a. CAL: = | (N = 7) = | No m-a available: Patient comfort (N = 7): ↑ Working time (N = 3): ↑ Adverse effects (N = 12): = |
Zhu et al. [42] | 2021 | GPAP | HI or US | M-a PPD (N = 10): ↑ (0.25, WMD, p = 0.35) BOP (N = 3): ↑ (−8%, WMD, p < 0.00001) Rec (N = 5): = (0.04−0.5 mm, WMD, p > 0.05) CAL (N = 2): ↑ (+0.3 mm, WMD, p > 0.05) | (N = 0) n.a. | M-a Patient comfort (N = 4): ↑* (VAS −1.5, WMD, p < 0.00001) Working time (N = 0): n.a. Adverse effects (N = 0): n.a. |
Zhang et al. [43] | 2019 | 1. GPAP 2. EPAP 3. TPAP | US | No m-a available: PPD (N = 5): = BOP/BI/GI (N = 6): = Rec (N = 3): = CAL (N = 3): = | (N = 0) n.a. | No m-a available: Patient comfort (N = 5): ↑ Working time (N = 0): n.a. Adverse effects (N = 0): n.a. |
Ng et al. [44] | 2018 | 1. GPAP 2. EPAP 3. EPAP + CHx | HI/US | M-a (N = 8) PPD red: ↑ (0.05, WMD, p = 0.34) BOP: = (0.01, WMD, p = 0.26) Rec: n.a. CAL: ↑ (−0.17, WMD, p = 0.11) | (N = 8) = | No m-a available: Patient comfort (N = 6): ↑ Working time (N = 0): n.a. Adverse effects (N = 0): n.a. |
Author | Year | Test Measures | Control Measures | Clinical Outcomes | Microbiological Outcomes | Patient-Related Outcomes |
---|---|---|---|---|---|---|
Ramanauskaite et al. [41] | 2021 | PIM—Standalone | ||||
OHI + GPAP | OHI + US | No m-a available: PPD: n.a. BOP: = Rec: n.a. CAL: n.a. | (N = 0) n.a. | (N = 0) n.a. | ||
PIM—Adjuncts | ||||||
1. OHI + US + GPAP 2. OHI + HI + polishing + GPAP | 1. OHI + US 2. OHI + HI + polishing | M-a (PPD): PPD: ↑ (−0.33 mm WMD, p = 0.34) BOP/BI: 1. = / 2. ↑ Rec: n.a. CAL: n.a | (N = 0) n.a. | (N = 0) n.a. | ||
PIT—Standalone | ||||||
1. OHI + GPAP 2. OHI + GPAP | 1. OHI + Er:Yag laser 2. OHI + HI + CHx | No m-a available: PPD: = BOP: 1. = / 2. ↑ Rec: 1. n.a. / 2. = CAL: n.a. | (N = 0) n.a. | (N = 0) n.a. | ||
PIT—Adjuncts | ||||||
OHI + removal of suprastructure + US + GPAP + CHx for 2 weeks | OHI + removal of suprastructure + US | No m-a available: PPD: = BOP: = Rec: = CAL: n.a. | (N = 0) n.a. | (N = 0) n.a. | ||
Surgical PIT—Adjuncts | ||||||
OHI + OFD with HI + GPAP + CHx mouth rinse for 10 days | OHI + OFD with HI + implantoplasty + CHx mouth rinse for 10 days | No m-a available: PPD: = BOP: = Rec: ↑ CAL: n.a. | (N = 0) n.a. | (N = 0) n.a. | ||
OFD with HI + GPAP + CHx mouth rinse for 10 days | OFD with HI + CHx mouth rinse for 10 days | No m-a available: PPD: ↑ BOP: = Rec: n.a. CAL: n.a. | (N = 0) n.a. | (N = 0) n.a. | ||
Boeira et al. [39] | 2021 | PIM—Standalone | ||||
1. GPAP 2. GPAP 3. GPAP | 1. HI 2. HI + CHx 3. HI | M-a (N = 2) PPD (6 m): 1. =/ 2. + 3. ↑ (-0.83, WMD, p < 0.00001) BOP (6 m): 1. =/ 2. + 3. = (−14.97, WMD, p < 0.67) Rec: n.a. CAL: n.a. | (N = 0) n.a. | No m-a available: Patient comfort (N = 0): n.a. Working time (N = 0): n.a. Adverse effects (N = 7): = | ||
PIM—Adjuncts | ||||||
1. OHI + US + GPAP 2. OHI + HI + polishing + GPAP | 1. OHI + US 2. OHI + HI + polishing | No m-a available: PPD: 1. =/ 2. ↑ BOP: 1. =/ 2. ↑ Rec: n.a. CAL: n.a. | (N = 0) n.a. | No m-a available: Patient comfort (N = 0): n.a. Working time (N = 0): n.a. Adverse effects (N = 7): = | ||
PIT—Standalone | ||||||
OHI + GPAP | OHI + HI + CHx | No m-a available: PPD: = BOP: ↑ Rec: n.a. CAL: = | (N = 0) n.a. | No m-a available: Patient comfort (N = 0): n.a. Working time (N = 0): n.a. Adverse effects (N = 7): = | ||
Schwarz et al. [7] | 2015 | PIM—Standalone | ||||
OHI + GPAP | OHI + US | No m-a available: PPD: n.a. BOP: = Rec: n.a. CAL: n.a. | (N = 0) n.a | (N = 0) n.a | ||
PIM—Adjuncts | ||||||
1. OHI + US + GPAP 2. OHI + HI + polishing + GPAP | 1. OHI + US 2. OHI + HI + polishing | No m-a available: PPD: 1. =/ 2. ↑ BOP/BI: 1. = / 2. ↑ Rec: n.a. CAL: n.a. | (N = 0) n.a | No m-a available: Patient comfort (N = 1): = Working time (N = 0): n.a. Adverse effects (N = 2): = | ||
PIT—Standalone | ||||||
1. OHI + GPAP 2. OHI + GPAP | 1. OHI + Er:Yag laser 2. OHI + HI + CHx | M-a PPD red: = (0.4 mm, WMD, p = 0.119) BOP: ↑ (−24%, WMD, p = 0.048) Rec: n.a. CAL: n.a. | (N = 0) n.a | No m-a available: Patient comfort (N = 0): n.a. Working time (N = 0): n.a. Adverse effects (N = 1): = | ||
Muthukuru et al. [45] | 2012 | PIT—Standalone | ||||
1. OHI + GPAP 2. OHI + GPAP | 1. OHI + Er:Yag laser irradiation 2. OHI + HI + CHx | No m-a available: PPD: 1. =/ 2. n.a. BOP: = Rec: 1. n.a./ 2. = CAL: 1. n.a./ 2. = | (N = 0) n.a. | (N = 0) n.a. |
Author | Year | Test Measures | Control Measures | Clinical Outcomes | Microbiological Outcomes | Patient-Related Outcomes |
---|---|---|---|---|---|---|
Tan et al. [38] | 2022 | 1. GPAP 2. HI + GPAP + prophylaxis brush 3. HI + GPAP + prophylaxis brush + CHx varnish | 1. HI + CHx 2. HI + SS + prophylaxis brush 3. HI + SS + prophylaxis brush + CHx | No m-a available: PPD: ↑/= BOP: ↑/= Rec: n.a. CAL: = | (N = 0) n.a. | (N = 0) n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatz, C.R.; Janson, T.M.; Solderer, A.; Bastendorf, K.-D.; Schmidlin, P.R.; Liu, C.C. An Umbrella Review on Low-Abrasive Air Powder Water Jet Technology in Periodontitis and Peri-Implantitis Patients. Appl. Sci. 2022, 12, 7203. https://doi.org/10.3390/app12147203
Hatz CR, Janson TM, Solderer A, Bastendorf K-D, Schmidlin PR, Liu CC. An Umbrella Review on Low-Abrasive Air Powder Water Jet Technology in Periodontitis and Peri-Implantitis Patients. Applied Sciences. 2022; 12(14):7203. https://doi.org/10.3390/app12147203
Chicago/Turabian StyleHatz, Christian R., Tobias M. Janson, Alex Solderer, Klaus-Dieter Bastendorf, Patrick R. Schmidlin, and Chun Ching Liu. 2022. "An Umbrella Review on Low-Abrasive Air Powder Water Jet Technology in Periodontitis and Peri-Implantitis Patients" Applied Sciences 12, no. 14: 7203. https://doi.org/10.3390/app12147203
APA StyleHatz, C. R., Janson, T. M., Solderer, A., Bastendorf, K.-D., Schmidlin, P. R., & Liu, C. C. (2022). An Umbrella Review on Low-Abrasive Air Powder Water Jet Technology in Periodontitis and Peri-Implantitis Patients. Applied Sciences, 12(14), 7203. https://doi.org/10.3390/app12147203