Thermal Layer Design in Fused Filament Fabrication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Testing
2.2. Application of Thermal Layer Design on a Component
3. Results
3.1. Material Data
3.2. Component Results
4. Discussion
4.1. Method and Results
4.2. Application and Significance of Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Design for Additive Manufacturing. In Additive Manufacturing Technologies; Springer: New York, NY, USA, 2021; pp. 555–607. [Google Scholar]
- Tofail, S.A.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Sun, J.; Yu, Z. The Effect of Process Parameters in Fused Deposition Modelling on Bonding Degree and Mechanical Properties. Rapid Prototyp. J. 2018, 24, 80–92. [Google Scholar] [CrossRef]
- Striemann, P.; Hülsbusch, D.; Niedermeier, M.; Walther, F. Optimization and Quality Evaluation of the Interlayer Bonding Performance of Additively Manufactured Polymer Structures. Polymers 2020, 12, 1166. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F.M.; Covas, J.A.; da Costa, S.F. Predicting the Effect of Build Orientation and Process Temperatures on the Performance of Parts Made by Fused Filament Fabrication. Rapid Prototyp. J. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Wolszczak, P.; Lygas, K.; Paszko, M.; Wach, R.A. Heat Distribution in Material during Fused Deposition Modelling. Rapid Prototyp. J. 2018, 24, 615–622. [Google Scholar] [CrossRef]
- Sanatgar, R.H.; Campagne, C.; Nierstrasz, V. Investigation of the Adhesion Properties of Direct 3D Printing of Polymers and Nanocomposites on Textiles: Effect of FDM Printing Process Parameters. Appl. Surf. Sci. 2017, 403, 551–563. [Google Scholar] [CrossRef]
- Das, A.; Chatham, C.A.; Fallon, J.J.; Zawaski, C.E.; Gilmer, E.L.; Williams, C.B.; Bortner, M.J. Current Understanding and Challenges in High Temperature Additive Manufacturing of Engineering Thermoplastic Polymers. Addit. Manuf. 2020, 34, 101218. [Google Scholar] [CrossRef]
- Kuznetsov, V.E.; Solonin, A.N.; Tavitov, A.; Urzhumtsev, O.; Vakulik, A. Increasing Strength of FFF Three-Dimensional Printed Parts by Influencing on Temperature-Related Parameters of the Process. Rapid Prototyp. J. 2019, 26, 107–121. [Google Scholar] [CrossRef]
- Goh, G.D.; Yap, Y.L.; Tan, H.K.J.; Sing, S.L.; Goh, G.L.; Yeong, W.Y. Process–Structure–Properties in Polymer Additive Manufacturing via Material Extrusion: A Review. Crit. Rev. Solid State Mater. Sci. 2020, 45, 113–133. [Google Scholar] [CrossRef]
- Birkelid, A.H.; Eikevåg, S.W.; Elverum, C.W.; Steinert, M. High-Performance Polymer 3D Printing—Open-Source Liquid Cooled Scalable Printer Design. HardwareX 2022, 11, e00265. [Google Scholar] [CrossRef] [PubMed]
- E3D SuperVolcano. Available online: https://e3d-online.com/blogs/news/finish-your-print-quicker-than-ever-before-the-supervolcano-has-erupted (accessed on 10 May 2022).
- PolyMide PA6-CF TDS V5. Available online: https://polymaker.com/Downloads/TDS/PolyMide_PA6_CF_TDS_V5.pdf (accessed on 10 May 2022).
- Yang, C.; Tian, X.; Li, D.; Cao, Y.; Zhao, F.; Shi, C. Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material. J. Mater. Processing Technol. 2017, 248, 1–7. [Google Scholar] [CrossRef]
- Eikevåg, S.W.; Elverum, C.W.; Birkelid, A.; Steinert, M. High-Performance Polymer 3D Printing—Open-Source Liquid Cooled Scalable Printer Design. Mendeley 2021. [Google Scholar] [CrossRef]
- ISO 7500-1 CEN EN ISO 7500-1; Metallic Materials-Verification of Static Uniaxial Testing Machines-Part 1: Tension/Compression Testing Machines-Verification and Calibration of the Force-Measuring System. European Committee for Standardization: Brussels, Belgium, 2004.
- Fahrenholz, H. The 2012 Version of ISO 527 Plastics: Determination of Tensile Properties; Zwick/Roell: Ulm, Germany, 2012; p. 27. [Google Scholar]
- FLIR ONE PRO, Android USB-C. Available online: https://support.flir.com/DsDownload/Assets/435-0007-03-en-US.html (accessed on 23 November 2021).
- Eikevåg, S.W.; Erichsen, J.F.; Steinert, M. Sports Equipment Design Impact on Athlete Performance—The PR1 Paralympic Women’s Indoor Rowing World Record. In Proceedings of the Engineering of Sport, West Lafayette, IN, USA, 6–10 June 2022; p. 2. [Google Scholar]
- Pooladvand, K.; Salerni, A.D.; Furlong, C. In-Situ Thermal Monitoring of Printed Components during Rapid Prototyping by Fused Deposition Modeling. In Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6; Springer: Cham, Switzerland, 2020; pp. 131–140. [Google Scholar]
Fixed Parameters | Value |
---|---|
Extruder temperature | 300 °C |
Bed temperature | 110 °C |
Chamber temperature | 70 °C |
Infill pattern | Rectilinear |
Infill density | 100% |
Max allowed acceleration | 900 mm/s2 |
Printing Speed | Volumetric Flow | Time per Layer * |
---|---|---|
4 mm/s | 0.725 mm3/s | 21.9 s |
5 mm/s | 0.903 mm3/s | 17.6 s |
6 mm/s | 1.096 mm3/s | 14.5 s |
7 mm/s | 1.235 mm3/s | 12.9 s |
8 mm/s | 1.458 mm3/s | 10.9 s |
9 mm/s | 1.568 mm3/s | 10.1 s |
10 mm/s | 1.757 mm3/s | 8.9 s |
11 mm/s | 1.895 mm3/s | 8.4 s |
12 mm/s | 2.035 mm3/s | 7.8 s |
14 mm/s | 2.435 mm3/s | 6.5 s |
16 mm/s | 2.698 mm3/s | 5.9 s |
18 mm/s | 3.064 mm3/s | 5.2 s |
20 mm/s | 3.285 mm3/s | 4.8 s |
25 mm/s | 4.345 mm3/s | 3.7 s |
30 mm/s | 5.602 mm3/s | 2.8 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bjørken, O.U.; Andresen, B.; Eikevåg, S.W.; Steinert, M.; Elverum, C.W. Thermal Layer Design in Fused Filament Fabrication. Appl. Sci. 2022, 12, 7056. https://doi.org/10.3390/app12147056
Bjørken OU, Andresen B, Eikevåg SW, Steinert M, Elverum CW. Thermal Layer Design in Fused Filament Fabrication. Applied Sciences. 2022; 12(14):7056. https://doi.org/10.3390/app12147056
Chicago/Turabian StyleBjørken, Olav U., Benjamin Andresen, Sindre W. Eikevåg, Martin Steinert, and Christer W. Elverum. 2022. "Thermal Layer Design in Fused Filament Fabrication" Applied Sciences 12, no. 14: 7056. https://doi.org/10.3390/app12147056
APA StyleBjørken, O. U., Andresen, B., Eikevåg, S. W., Steinert, M., & Elverum, C. W. (2022). Thermal Layer Design in Fused Filament Fabrication. Applied Sciences, 12(14), 7056. https://doi.org/10.3390/app12147056