Genetic Parameters for Selected Traits of Inbred Lines of Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Field Trails
2.3. Genetic Parameters
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, Y.; Zhao, X.; Li, W.; Zhou, W. Identification and meta-analysis of QTLs for four leaf shape traits in two maize populations under contracting watering environments. Genet. Resour. Crop Evol. 2021, 68, 1557–1575. [Google Scholar] [CrossRef]
- Shehata, A.I.; Al-Ghethar, H.A.; Al-Homaidan, A.A. Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi J. Biol. Sci. 2009, 16, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berilli, A.P.C.G.; Pereira, M.G.; Gonçalves, L.S.A.; da Cunha, K.S.; Ramos, H.C.C.; Souza Filho, G.A.; do Amaral Júnior, A.T. Use of molecular markers in reciprocal recurrent selection of maize increases heterosis effects. Genet. Mol. Res. 2011, 10, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
- Herzog, E.; Falke, K.C.; Presterl, T.; Scheuermann, D.; Ouzunova, M.; Frisch, M. Selection Strategies for the Development of Maize Introgression Populations. PLoS ONE 2014, 9, e92429. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Schmidt, R.H.; Zhao, Y.; Reif, J.C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 2017, 49, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Fu, Y.; Zhang, P.; Wu, S.; Tian, F.; Liu, J.; Zhu, Z.; Yang, J.; Sun, C. Additive and Over-dominant Effects Resulting from Epistatic Loci Are the Primary Genetic Basis of Heterosis in Rice. J. Integr. Plant Biol. 2009, 51, 393–408. [Google Scholar] [CrossRef]
- Li, C.-Q.; Song, L.; Zhao, H.-H.; Wang, Q.-L.; Fu, Y.-Z. Identification of quantitative trait loci with main and epistatic effects for plant architecture traits in Upland cotton (Gossypium hirsutum L.). Plant Breed. 2014, 133, 390–400. [Google Scholar] [CrossRef]
- Bisawas, A.; Sarker, U.; Banik, B.R.; Rohman, M.M.; Talukder, M.Z.A. Genotype x environment interaction for grain yield of maize (Zea mays L.) inbreds under salinity stress. Bangladesh J. Agr. Res. 2014, 39, 293–301. [Google Scholar] [CrossRef]
- Acosta-Pech, R.; Crossa, J.; de los Campos, G.; Pérez-Rodríguez, P. Genomic models with genotype × environment interaction for predicting hybrid performance: An application in maize hybrids. Theor. Appl. Genet. 2017, 130, 1431–1440. [Google Scholar] [CrossRef]
- Bocianowski, J.; Warzecha, T.; Nowosad, K.; Bathelt, R. Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). J. Appl. Genet. 2019, 60, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, L.; McSteen, P.; Doebley, J.; Hake, S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 2002, 162, 1927–1935. [Google Scholar] [CrossRef] [PubMed]
- Gaudin, A.C.; McClymont, S.A.; Soliman, S.S.; Raizada, M.N. The effect of altered dosage of a mutant allele of teosinte branched 1 (tb1-ref) on the root system of modern maize. BMC Genet. 2014, 15, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Jiang, S.; Cheng, Q.; Wang, X.; Yan, J.; Zhang, R.; Qiao, F.; Ma, C.; Luo, J.; Li, W.; et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 2021, 22, 148. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, K.; Yin, Y.; Tang, D.; Ni, J.; Li, P.; Wang, L.; Rong, T.; Liu, J. Identification of a major QTL and genome-wide epistatic interactions for single vs. paired spikelets in a maize-teosinte F2 population. Mol. Breed. 2022, 42, 9. [Google Scholar] [CrossRef]
- Cyplik, A.; Bocianowski, J. Analytical and numerical comparisons of two methods of estimation of additive × additive × additive interaction of QTL effects. J. Appl. Genet. 2022, 63, 213–221. [Google Scholar] [CrossRef]
- Choo, T.M.; Reinbergs, E. Analyses of Skewness and Kurtosis for Detecting Gene Interaction in a Doubled Haploid Population. Crop Sci. 1982, 22, 231–235. [Google Scholar] [CrossRef]
- Bocianowski, J.; Krajewski, P. Comparison of the genetic additive effect estimators based on phenotypic observations and on molecular marker data. Euphytica 2009, 165, 113–122. [Google Scholar] [CrossRef]
- Bocianowski, J. A comparison of two methods to estimate additive-by-additive interaction of QTL effects by a simulation study. J. Theor. Biol. 2012, 308, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Bocianowski, J. Analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. Sci. Agric. 2012, 69, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Andorf, C.; Beavis, W.D.; Hufford, M.; Smith, S.; Suza, W.P.; Wang, K.; Woodhouse, M.; Yu, J.; Lübberstedt, T. Technological advances in maize breeding: Past, present and future. Theor. Appl. Genet. 2019, 132, 817–849. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.K.; Lipsa, D.; Sandeep, R. Evaluation of Host Plant Resistance Traits in Certain Genotypes of Maize (Zea Mays L.) against Maize Spotted Stem Borer (Chilo Partellus Swinhoe, Crambidae). Int. J. Entomol. Res. 2021, 6, 64–69. [Google Scholar]
- Unterseer, S.; Bauer, E.; Haberer, G.; Seidel, M.; Knaak, C.; Ouzunova, M.; Meitinger, T.; Strom, T.M.; Fries, R.; Pausch, H.; et al. A powerful tool for genome analysis in maize: Development and evaluation of the high density 600 k SNP genotyping array. BMC Genom. 2014, 15, 823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Mezmouk, S.; Baumgarten, A.; Buckler, E.S.; Guill, K.E.; McMullen, M.D.; Mumm, R.H.; Ross-Ibarra, J. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet. 2017, 13, e1007019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.B.; Ehrenreich, I.M. Higher-order genetic interactions and their contribution to complex traits. Trends Genet. 2015, 31, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Chaikam, V.; Molenaar, W.; Melchinger, A.E.; Boddupalli, P.M. Doubled haploid technology for line development in maize: Technical advances and prospects. Theor. Appl. Genet. 2019, 132, 3227–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaljevic, R.; Utz, H.F.; Melchinger, A.E. No evidence for epistasis in hybrid and per se performance of elite European flint maize inbreds from generation means and QTL analyses. Crop Sci. 2005, 45, 2605–2613. [Google Scholar] [CrossRef]
- Blanc, G.; Charcosset, A.; Mangin, B.; Gallais, A.; Moreau, L. Connected populations for detecting quantitative trait loci and testing for epistasis: An application in maize. Theor. Appl. Genet. 2006, 113, 206–224. [Google Scholar] [CrossRef]
- Stange, M.; Schrag, T.A.; Utz, H.F.; Riedelsheimer, C.; Bauer, E.; Melchinger, A.E. High-density linkage mapping of yield components and epistatic interactions in maize with doubled haploid lines from four crosses. Mol. Breed. 2013, 32, 533–546. [Google Scholar] [CrossRef]
- Bocianowski, J.; Kozak, M.; Liersch, A.; Bartkowiak-Broda, I. A heuristic method of searching for interesting markers in terms of quantitative traits. Euphytica 2011, 181, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Rong, M.; Wang, M.; Chen, D.; Yu, H. Combining Ability Analysis of Relevant Characters of Maize Inbred Lines Suitable for Machine Harvest. Comput. Intell. Neurosci. 2022, 2022, 2480801. [Google Scholar] [CrossRef]
- Łącka, A.; Nowosad, K.; Bocianowski, J.; Szulc, P. Heredity of chloroplast pigments parameters of maize (Zea mays L.). Maydica 2021, 66, 8. [Google Scholar]
- Amegbor, I.K.; van Biljon, A.; Shargie, N.; Tarekegne, A.; Labuschagne, M.T. Heritability and Associations among Grain Yield and Quality Traits in Quality Protein Maize (QPM) and Non-QPM Hybrids. Plants 2022, 11, 713. [Google Scholar] [CrossRef] [PubMed]
- Gazala, P.; Gangappa, E.; Ramesh, S.; Vedashree, M.S.; Raghu, R. Genetics of grain yield and its component traits in maize. Electron. J. Plant Breed. 2022, 13, 132–136. [Google Scholar] [CrossRef]
- Bocianowski, J. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet. Mol. Biol. 2013, 36, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatun, M.; Monir, M.M.; Lou, X.; Zhu, J.; Xu, H. Genome-wide association studies revealed complex genetic architecture and breeding perspective of maize ear traits. BMC Plant Biol. 2022. [Google Scholar] [CrossRef]
- Ma, X.Q.; Tang, J.H.; Teng, W.T.; Yan, J.B.; Meng, Y.J.; Li, J.S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol. Breed. 2007, 20, 41–51. [Google Scholar] [CrossRef]
Location | Origin | Parameter | Cob Length | Cob Diameter | Core Length | Core Diameter | The Number of Rows of Grain | The Number of Grains in A Row | Mass of Grain from the Cob | Thousand Kernel Weight | Yield |
---|---|---|---|---|---|---|---|---|---|---|---|
Kobierzyce | Smolice | mean | 15.55 | 3.97 | 15.44 | 2.16 | 15.73 | 27.91 | 114.8 | 265.15 | 4.59 |
a | 4.03 *** | 0.92 *** | 4.06 *** | 0.71 *** | 4.80 *** | 6.97 *** | 47.41 *** | 91.79 *** | 1.90 *** | ||
aa | 0.09 | 0.09 | 0.06 | 0.12 ** | 1.07 ** | −0.01 | −3.19 * | −1.94 | −0.13 * | ||
aaa | 0.06 | 0.18 * | 0.24 | 0.19 ** | 1.27 ** | 0.42 | −4.19 * | 0.47 | −0.17 * | ||
Kobierzyce | Kobierzyce | mean | 15.37 | 3.85 | 15.17 | 2.03 | 15.41 | 27.44 | 106.61 | 254.47 | 4.26 |
a | 3.83 *** | 0.66 *** | 3.82 *** | 0.59 *** | 4.56 *** | 8.61 *** | 49.44 *** | 91.02 *** | 1.98 *** | ||
aa | −0.38 * | −0.08 | −0.52 * | −0.01 | 1.59 *** | −0.05 | −1.88 | 3.02 | −0.08 | ||
aaa | −0.76 * | −0.06 | −0.80 ** | 0.03 | 1.59 *** | 0.39 | 1.04 | −1.34 | 0.04 | ||
Smolice | Smolice | mean | 13.36 | 4.09 | 13.6 | 2.24 | 15.01 | 24.97 | 94.38 | 288.9 | 3.78 |
a | 3.40 *** | 0.75 *** | 3.28 *** | 0.96 *** | 4.40 *** | 11.15 *** | 42.72 *** | 103.9 *** | 1.71 *** | ||
aa | 0.44 * | 0.03 | 0.42 * | −0.39 *** | 0.86 ** | −3.11 *** | 3.97 * | −4.06 | 0.16 * | ||
aaa | 0.30 * | 0.24 ** | 0.57 * | −0.39 *** | 0.99 ** | −7.20 *** | 3.68 * | −3.56 | 0.15 * | ||
Smolice | Kobierzyce | mean | 12.91 | 3.98 | 13.3 | 2.28 | 14.91 | 25.32 | 87.46 | 276.22 | 3.5 |
a | 4.28 *** | 0.75 *** | 3.56 *** | 0.33 *** | 4.11 *** | 9.06 *** | 43.81 *** | 97.5 *** | 1.75 *** | ||
aa | −0.47 * | −0.21 ** | −0.08 | 0.04 | 1.20 ** | −2.27 ** | −7.62 ** | 11.39 * | −0.30 ** | ||
aaa | −1.08 ** | −0.37 ** | −0.30 * | 0.04 | 1.76 *** | −3.32 *** | −11.98 *** | 17.11 ** | −0.48 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cyplik, A.; Sobiech, A.; Tomkowiak, A.; Bocianowski, J. Genetic Parameters for Selected Traits of Inbred Lines of Maize (Zea mays L.). Appl. Sci. 2022, 12, 6961. https://doi.org/10.3390/app12146961
Cyplik A, Sobiech A, Tomkowiak A, Bocianowski J. Genetic Parameters for Selected Traits of Inbred Lines of Maize (Zea mays L.). Applied Sciences. 2022; 12(14):6961. https://doi.org/10.3390/app12146961
Chicago/Turabian StyleCyplik, Adrian, Aleksandra Sobiech, Agnieszka Tomkowiak, and Jan Bocianowski. 2022. "Genetic Parameters for Selected Traits of Inbred Lines of Maize (Zea mays L.)" Applied Sciences 12, no. 14: 6961. https://doi.org/10.3390/app12146961
APA StyleCyplik, A., Sobiech, A., Tomkowiak, A., & Bocianowski, J. (2022). Genetic Parameters for Selected Traits of Inbred Lines of Maize (Zea mays L.). Applied Sciences, 12(14), 6961. https://doi.org/10.3390/app12146961