Low-Cycle Reverse Loading Tests of the Continuous Basalt Fiber-Reinforced Polymer Column Filled with Concrete
Abstract
:1. Introduction
2. Low-Cycle Reversed Loading Test
2.1. Design Parameters of Column Specimens
2.2. Test Scheme
2.3. Test Results
2.3.1. PRC Tube Column Specimen
2.3.2. PHC Tube Column Specimen
2.3.3. BFRPC Tube Column Specimen
2.4. Test Phenomenon Comparison
3. Analysis of Test Results
3.1. Hysteric Curves
3.2. Skeleton Curve
4. Conclusions
- (1)
- The forward/reverse extreme loads are 118.77 kN/107.44 kN for the PHC tube column specimen, 169.59 kN/156.93 kN for the PRC tube column specimen, and 592.07 kN/553.72 kN for the BFRPC composite column specimen. The forward/reverse extreme displacements are 23.21 mm/22.21 mm for the PHC tube column specimen, 81.76 mm/78.74 mm for the PRC tube column specimen, and 140 mm/140 mm for the BFRPC composite column specimen.
- (2)
- The BFRPC composite column is about 5 times and 6 times than PHC tube column and is about 3.5 times and 2 times than PRC tube column for the horizontal bearing capacity and extreme displacement, respectively.
- (3)
- The failure of the BFRPC composite column belongs to ductile failure without yield point, and its ductility is significantly less than that of PRC tube column. The PHC tube column presents a certain brittle failure behavior.
- (4)
- For the BFRPC composite column the installation of FRP tube is equivalent to an increase in the reinforcement ratio of the concrete column, which can significantly improve its ultimate load carrying capacity.
- (5)
- The functional form for the skeleton curve of BFRPC composite column can be approximately represented by the inverse hyperbolic sine function.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jariwala, H.; Jain, P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J. Reinf. Plast. Compos. 2019, 38, 441–453. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Das, S.C.; Nizam, M.E.H. Applications of fiber reinforced polymer composites (FRP) in civil engineering. Int. J. Adv. Struct. Geotech. Eng. 2014, 3, 299–309. [Google Scholar]
- Gowda, T.G.Y.; Sanjay, M.R.; Bhat, K.S.; Madhu, P.; Senthamaraikannan, P.; Yogesha, B. Polymer matrix-natural fiber composites: An overview. Cogent Eng. 2018, 5, 1446667. [Google Scholar] [CrossRef]
- Dong, Z.; Han, T.; Zhang, B.; Zhu, H.; Wu, G.; Wei, Y.; Zhang, P. A review of the research and application progress of new types of concrete-filled FRP tubular members. Constr. Build. Mater. 2021, 312, 125353. [Google Scholar] [CrossRef]
- Hollaway, L.C. The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Constr. Build. Mater. 2003, 17, 365–378. [Google Scholar] [CrossRef]
- Wang, J.; Gangarao, H.; Liang, R.; Liu, W. Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review. J. Reinf. Plast. Compos. 2016, 35, 179–211. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.A. green material from rock: Basalt fiber—A review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Ivanitskii, S.G.; Gorbachev, G.F. Continuous basalt fibers: Production aspects and simulation of forming processes. I. State of the art in continuous basalt fiber technologies. Powder Metall. Met. Ceram. 2011, 50, 125–129. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, J.; Gu, Y.; Li, G.; Cui, J. Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites. Polym. Compos. 2020, 41, 4181–4191. [Google Scholar] [CrossRef]
- Shi, F.; Su, H.; Zhao, L.; Yu, X.; Li, S. Study on the Structure and Properties of Continuous Basalt Fibres. Fibres Text. East. Eur. 2020, 28, 52–56. [Google Scholar]
- Si, J.; Wang, Z.; Li, J.; Zuo, C.; Zhang, P.; Wei, C.; Wang, J.; Li, W.; Miao, S. Effects of CaO added to raw basalt on producing continuous basalt fibers and their mechanical properties. J. Non-Cryst. Solids 2021, 568, 120941. [Google Scholar] [CrossRef]
- Gutnikov, S.I.; Popov, S.S.; Efremov, V.A.; Ma, P.C.; Lazoryak, B.I. Correlation of phase composition, structure, and mechanical properties of natural basalt continuous fibers. Nat. Resour. Res. 2021, 30, 1105–1119. [Google Scholar] [CrossRef]
- Militký, J.; Kovačič, V.; Rubnerová, J. Influence of thermal treatment on tensile failure of basalt fibers. Eng. Fract. Mech. 2002, 69, 1025–1033. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Dias, D.P.; Thaumaturgo, C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005, 27, 49–54. [Google Scholar] [CrossRef]
- Chiadighikaobi, P.C.; Alaraza, H.A.A.A.; Ibeh, N.U.; Niazmand, M.A.; Adegoke, M.A.; Tefera, B.B.; Vladimir, J.P. Durability assessment of basalt fiber polymer as reinforcement to expanded clay concrete in harsh environment. Cogent Eng. 2021, 8, 1918855. [Google Scholar] [CrossRef]
- Wu, X. Research Progress on Application of Basalt Fiber in Civil Engineering. Bulletion Chin. Ceram. Soc. 2020, 39, 1043–1056. [Google Scholar]
- Zhang, H.; Yao, Y.; Zhu, D.; Mobasher, B.; Huang, L. Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures. Polym. Test. 2016, 51, 29–39. [Google Scholar] [CrossRef]
- Sadeghian, P.; Fillmore, B. Strain distribution of basalt FRP-wrapped concrete cylinders. Case Stud. Constr. Mater. 2018, 9, e00171. [Google Scholar] [CrossRef]
- Ding, L.; Liu, X.; Wang, X.; Huang, H.; Wu, Z. Mechanical properties of pultruded basalt fiber-reinforced polymer tube under axial tension and compression. Constr. Build. Mater. 2018, 176, 629–637. [Google Scholar] [CrossRef]
- Suon, S.; Saleem, S.; Pimanmas, A. Compressive behavior of basalt FRP-confined circular and non-circular concrete specimens. Constr. Build. Mater. 2019, 195, 85–103. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N. Experimental study of flax FRP tube encased coir fibre reinforced concrete composite column. Constr. Build. Mater. 2012, 40, 1118–1127. [Google Scholar] [CrossRef]
- Cole, B.; Fam, A. Flexural Load Testing of Concrete-Filled FRP Tubes with Longitudinal Steel and FRP Rebar. J. Compos. Constr. 2006, 10, 161–171. [Google Scholar] [CrossRef]
- Fam, A.Z.; Rizkalla, S.H. Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes. Struct. J. 2001, 98, 451–461. [Google Scholar]
- Mirmiran, A.; Shao, Y.; Shahawy, M. Analysis and field tests on the performance of composite tubes under pile driving impact. Compos. Struct. 2002, 55, 127–135. [Google Scholar] [CrossRef]
- Weaver, T.J.; Ashford, S.A.; Rollinks, K.M. Lateral load behavior of a concrete-Filled GFRP pipe. In Proceedings of the Geo-Congress 2008 Geosustainability and Geohazard Mitigation, New Orleans, LA, USA, 9–12 March 2008; pp. 931–938. [Google Scholar]
- Huang, F.Y.; Wu, S.W.; Luo, X.Y.; Chen, B.C.; Lin, Y.W. Pseudo-static low cycle test on the mechanical behavior of PHC pipe piles with consideration of soil-pile interaction. Eng. Struct. 2018, 171, 992–1006. [Google Scholar] [CrossRef]
- Tang, C.; Ni, J.; Ye, L. Nonlinear Full Range Hysteretic Analysis on Unbonded Partially Prestressed Concrete Beams. J. Hunan Univ. Nat. Sci. 2015, 42, 62–68. [Google Scholar]
- Murugan, M.; Muthukkumaran, K.; Natarajan, C. FRP-strengthened RC piles. II: Piles under cyclic lateral loads. J. Perform. Constr. Facil. 2017, 31, 04017004. [Google Scholar] [CrossRef]
- China Institute of Building Standard Design and Research. Prestressed Concrete Pipe Piles. In National Building Standards Design Atlas; China Planning Press: Beijing, China, 2008. [Google Scholar]
Parameter | Single Fiber Diameter | Tensile Strength | Density | Elastic Modulus |
---|---|---|---|---|
Value | 17.5 µm | 1612 MPa | 2.63 g·cm−3 | 103 MPa |
Column Type | Column Length (m) | Diameter (mm) | Wall Thickness (mm) | Type of Steel Bars | Concrete Strength Grade |
---|---|---|---|---|---|
BFRPC | 5 | 400 | 25 | Ordinary | C30 |
PHC | 5 | 400 | 95 | Prestressed | C80 |
PRC | 5 | 400 | 95 | Prestressed and ordinary | C80 |
Column Type | Load (kN) and Displacement (mm) | Forward Loading | Reverse Loading | |||
---|---|---|---|---|---|---|
Cracking Point | Peak Point | Extreme Point | Peak Point | Extreme Point | ||
PRC | Load | 60 | 174.96 | 169.59 | −169.14 | −156.93 |
Displacement | 3.77 | 50.96 | 81.76 | −47.94 | −78.74 | |
PHC | Load | 75 | 119.94 | 118.77 | −122.08 | −107.44 |
Displacement | 4.06 | 18.48 | 23.21 | −12.05 | −22.21 | |
BFRPC | Load | / | 592.07 | 592.07 | −553.72 | −553.72 |
Displacement | / | 140 | 140 | −140 | −140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, H.; Guo, Q.; Dai, G.; Zhou, J.; Xie, P. Low-Cycle Reverse Loading Tests of the Continuous Basalt Fiber-Reinforced Polymer Column Filled with Concrete. Appl. Sci. 2022, 12, 6359. https://doi.org/10.3390/app12136359
Li J, Liu H, Guo Q, Dai G, Zhou J, Xie P. Low-Cycle Reverse Loading Tests of the Continuous Basalt Fiber-Reinforced Polymer Column Filled with Concrete. Applied Sciences. 2022; 12(13):6359. https://doi.org/10.3390/app12136359
Chicago/Turabian StyleLi, Jianhang, Hongbo Liu, Qing Guo, Guoliang Dai, Junlong Zhou, and Penglin Xie. 2022. "Low-Cycle Reverse Loading Tests of the Continuous Basalt Fiber-Reinforced Polymer Column Filled with Concrete" Applied Sciences 12, no. 13: 6359. https://doi.org/10.3390/app12136359
APA StyleLi, J., Liu, H., Guo, Q., Dai, G., Zhou, J., & Xie, P. (2022). Low-Cycle Reverse Loading Tests of the Continuous Basalt Fiber-Reinforced Polymer Column Filled with Concrete. Applied Sciences, 12(13), 6359. https://doi.org/10.3390/app12136359