Regional Analysis of Dust Day Duration in Central Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Homogeneity Testing of DDD
Discordancy Test
2.3. Statistical Analyses of Dust Days
2.4. Importance of Factors Affecting Dust Duration using Synoptic Station Data
k-NN Classification
3. Results
3.1. Regional Homogeneity Test
3.2. Statistical Analysis of Dust Durability
3.3. Frequency Analysis of Duration of Dust Days
3.4. Parameters Affecting Dust Day Duration
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Reed, L.; Nugent, K. The health effects of dust storms in the Southwest United States. Southwest Respir. Crit. Care Chron. 2018, 6, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Xie, H.; Jiang, T.; Huang, J.; Bi, B.; Huang, Z.; Shi, J. Seasonal characteristics of aerosol vertical structure and autumn enhancement of non-spherical particle over the semi-arid region of Northwest China. Atmos. Environ. 2020, 244, 117912. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.; Rautenbach, C.J.d.W.; Eriksson, P. Changes of Permanent Lake Surface, and Their Consequences for Dust Aerosol and Air Quality: The Hamoun Lakes of the Sistan Area, Iran. In Atmospheric Aerosols: Regional Characteristics—Chemistry and Physics; IntechOpen: Rijeka, Croatia, 2012; Chapter 6; pp. 163–202. [Google Scholar] [CrossRef] [Green Version]
- Kok, J.F.; Parteli, E.J.R.; Michaels, T.I.; Bou Karam, D. The physics of wind-blown sand and dust. J. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoljoodi, M.; Didevarasl, A.; Montazerzohor, Z. Application of the dust simulation models in the Middle East, and dust-dispertion toward the western/southwestern Iran (case study: 22–26 June 2010). J. Nat. Sci. 2013, 5, 818–831. [Google Scholar]
- Zhou, T.; Xie, H.; Bi, J.; Huang, Z.; Huang, J.; Shi, J.; Zhang, B.; Zhang, W. Lidar Measurements of Dust Aerosols during Three Field Campaigns in 2010, 2011 and 2012 over Northwestern China. Atmosphere 2018, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. Atmos. 2013, 118, 78647872. [Google Scholar] [CrossRef] [Green Version]
- Khoshsima, M.; Ali Akbari Bidokhti, A.; Givi, F. Evaluation of aerosol optical depth using visibility and remote sensing data in urban and semi urban areas in Iran. J. Earth Space Phys. 2013, 39, 163–174. [Google Scholar]
- Schepanski, K. Transport of mineral dust and its impact on climate. Geosciences 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Novlan, D.J.; Hardiman, M.; Gill, T.E. A synoptic climatology of blowing dust events in El Paso, Texas from 1932–2005. In Proceedings of the of the 16th Conference on Applied Climatology, American Meteorological Society, San Antonio, TX, USA, 18 January 2007. [Google Scholar]
- Xie, J.; Yang, C.; Zhou, B.; Huang, Q. High-performance computing for the simulation of dust storms. J. Comput. Environ. Urban Syst. 2010, 34, 278–290. [Google Scholar] [CrossRef]
- Lin, C.A.; Sheng, Y.F.; Chen, W.W.; Wang, Z.; Kuo, C.H.; Chen, W.C.; Yang, T. The impact of channel effect on Asian dust transport dynamics: A case in southeastern Asia. J. Atmos. Chem. Phys. 2012, 12, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Malakooti, H.; Babahosseini, S.; Azadi, M.; Nouhegar, A. Formation and Evolution of a heavy dust storm over Middle East: A Numerical Case Study. In Proceedings of the International Symposium on Advances in Science and Technology, Bandar-Abbas, Iran, 7–8 March 2013; Volume 7, Organized by Khavaran Institute of Higher Education. pp. 1–9. [Google Scholar]
- Cuevas, E. Establishing WMO Sand and Dust Storm Warning Advisory and Assessment System Regional Node for West Asia: Current Capabilities and Needs; World Meteorological Organization: Geneva, Switzerland, 2013; pp. 1–18. [Google Scholar]
- Kumar, R.; Barth, M.C.; Pfister, G.G.; Naja, M.; Brasseur, G.P. WRF-Chem Simulations of a typical pre-monsoon dust storm in northern India: Influences on aerosol optical properties and radiation budget. J. Atmos. Chem. Phys. 2014, 14, 2431–2446. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, Z.; OmIdian, M.; Mapar, M.; Yaghoubi, R.; Shohani, S. Comparison of the number of referees with skin disarders to dermatologic clinics before and after dust stoum in Ahvaz. Jientashapir 2013, 3, 103–113. [Google Scholar]
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. Human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, O.A.; Derry, L.A.; Vitousek, P.M.; Huebert, B.J.; Hedin, L.O. Changing sources of nutrients during four million years of ecosystem development. Nature 1999, 397, 491–497. [Google Scholar] [CrossRef]
- Reynolds, R.; Belnap, J.; Reheis, M.; Lamothe, P.; Luiszer, F. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source. Proc. Natl. Acad. Sci. USA 2001, 98, 7123–7127. [Google Scholar] [CrossRef] [Green Version]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Okin, G.S.; Alvarez, L.; Epstein, H. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry 2007, 85, 317–332. [Google Scholar] [CrossRef]
- Cappell, A.; Sanderman, J.; Thomas, M.; Read, A.; Leslie, C. The dynamics of soil redistribution and the implications for soil organic carbon accounting in agricultural south-eastern Australia. Glob. Change Biol. 2012, 18, 2081–2088. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. The changing frequency of dust storms through time. Clim. Change 1992, 20, 197–225. [Google Scholar] [CrossRef]
- Moulin, C.; Lambert, C.E.; Dulac, F.; Dayan, U. Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 1997, 387, 691. [Google Scholar] [CrossRef]
- Shaffer, G.; Lambert, F. In and out of glacial extremes by way of dust—Climate feedbacks. Proc. Natl. Acad. Sci. USA 2018, 115, 2026–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh Choobari, O.; Zawar-Reza, P.; Sturman, A. The wind of 120 days and dust storm activity over the Sistan Basin. J. Atmos. Res. 2014, 143, 328–341. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Sciortino, M.; Kaskaoutis, D.G.; Rashki, A. Classification of synoptic weather clusters associated with dust accumulation over southeastern areas of the Caspian Sea (Northeast Iran and Karakum desert). Aeolian Res. 2022, 54, 100771. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Aziz, G.; Shamsipour, A.; Miri, M.; Safarrad, T. Synoptic and remote sensing analysis of dust events in southwestern Iran. Nat. Hazards 2012, 64, 1625–1638. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Some statistical useful in regional frequency analysis. Water Resour. Res. 1993, 29, 271–281. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis an Approach Based on L-Moment; Cambridge University: Cambridge, UK, 1997. [Google Scholar]
- Rao, A.R.; Hamed, K.H. Regional frequency analysis of Wabash river flood data by L-moments. J. Hydrol. Eng. 1997, 2, 169–179. [Google Scholar] [CrossRef]
- Boughton, W.C. Flood estimation from short records. J. Hydraul. Div. 1976, 102, 241–253. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN Classification with Different Numbers of Nearest Neighbors. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1774–1785. [Google Scholar] [CrossRef]
- Shahsavani, A.; Tobías, A.; Querol, X.; Stafoggia, M.; Abdolshahnejad, M.; Mayvaneh, F.; Guo, Y.; Hadei, M.; Hashemi, S.S.; Khosravi, A.; et al. Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. Environ. Int. 2020, 134, 105299. [Google Scholar] [CrossRef] [PubMed]
- Baghbanan, P.; Ghavidel, Y.; Farajzadeh, M. Spatial analysis of spring dust storms hazard in Iran. Theor. Appl. Clim. 2019, 139, 1447–1457. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Dust emission simulation with the WRF-Chem model using new surface data in the Middle East region. J. Earth Space Phys. 2013, 39, 191–212. [Google Scholar]
- Mesbahzadeh, T.; Salajeghe, A.; Sardoo, F.S.; Zehtabian, G.; Ranjbar, A.; Krakauer, N.Y.; Miglietta, M.M.; Mirakbari, M. Climatology of dust days in the Central Plateau of Iran. Nat. Hazards 2020, 104, 1801–1817. [Google Scholar] [CrossRef]
- Middleton, N. Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, K.; Sciortino, M.; Kaskaoutis, D.G. Classification of weather clusters over the Middle East associated with high atmospheric dust-AODs in West Iran. Atmos. Res. 2021, 259, 105682. [Google Scholar] [CrossRef]
- Ebrahimi, Z.; Khosroshahi, M.; Roustaei, F.; Mirakbari, M. Spatial and seasonal variations of sand-dust events and their relation to atmospheric conditions and vegetation cover in semi-arid regions of central Iran. Geoderma 2020, 365, 114225. [Google Scholar] [CrossRef]
Latitude (°N) | Longitude (°E) | Station Names |
---|---|---|
30.88 | 55.25 | Anar |
29.10 | 58.35 | Bam |
28.73 | 57.67 | Jiroft |
27.97 | 57.70 | Kahnooj |
30.25 | 56.97 | Kerman |
30.42 | 57.70 | Shahdad |
29.55 | 55.68 | Sirjan |
30.10 | 55.13 | Shahrbabak |
33.38 | 52.38 | Ardestan |
32.52 | 51.71 | Isfahan |
33.78 | 55.08 | Khoor.Biabank |
32.85 | 53.08 | Naeein |
33.53 | 51.90 | Natanz |
31.98 | 51.83 | Shahreza |
32.52 | 51.85 | Kabootaabad |
34.13 | 49.83 | Arak |
33.88 | 50.48 | Mahalat |
35.05 | 50.33 | Saveh |
34.70 | 50.85 | Ghom |
34.78 | 51.18 | Salafchegan |
35.59 | 53.42 | Semnan |
27.13 | 60.92 | Zabol |
29.47 | 60.47 | Zahdan |
32.43 | 53.62 | Aghda |
31.90 | 54.28 | Yazd |
30.50 | 54.25 | Marvast |
36.18 | 57.65 | Sabzevar |
32.89 | 52.28 | Birjand |
34.03 | 58.18 | Ferdoos |
33.67 | 56.90 | Tabas |
35.92 | 50.90 | Karaj |
36.25 | 50.00 | Ghazvin |
36.00 | 50.75 | Hashtgerd |
35.75 | 51.88 | Abali |
36.20 | 49.95 | Takestan |
D | LCk | LCv | LCs | Station Name | Station Number |
---|---|---|---|---|---|
1.19 | 0.230 | 0.310 | 0.250 | Anar | 1 |
1.55 | 0.348 | 0.508 | 0.5 | Bam | 2 |
1.70 | 0 | 0.532 | 0.225 | Jiroft | 3 |
1.53 | 0.323 | 0.564 | 0.505 | Kahnooj | 4 |
1.12 | 0.144 | 0.459 | 0.263 | Kerman | 5 |
0.78 | 0.064 | 0.443 | 0.234 | Shahdad | 6 |
0.6 | 0.150 | 0.401 | 0.269 | Sirjan | 7 |
0.04 | 0.160 | 0.464 | 0.299 | Shahrbabak | 8 |
1.55 | 0.384 | 0.509 | 0.501 | Ardestan | 9 |
1.65 | 0.124 | 0.434 | 0.254 | Isfahan | 10 |
1.23 | 0.345 | 0.356 | 0.265 | Khoor.Biabank | 11 |
1.12 | 0.256 | 0.214 | 0.567 | Naeein | 12 |
0.87 | 0.154 | 0.456 | 0.354 | Natanz | 13 |
1.18 | 0.321 | 0.785 | 0.2457 | Shahreza | 14 |
1.23 | 0.298 | 0.458 | 0.286 | Kabootaabad | 15 |
1.98 | 0.287 | 0.443 | 0.2632 | Arak | 16 |
0.65 | 0.253 | 0.469 | 0.321 | Mahalat | 17 |
1.34 | 0.215 | 0.346 | 0.324 | Saveh | 18 |
1.25 | 0.145 | 0.765 | 0.354 | Ghom | 19 |
1.12 | 0.186 | 0.745 | 0.435 | Salafchegan | 20 |
0.67 | 0.196 | 0/561 | 0.406 | Semnan | 21 |
1.77 | 0.229 | 0/422 | 0.298 | Zabol | 22 |
0.43 | 0.397 | 0.453 | 0.501 | Zahdan | 23 |
1.64 | 0.389 | 0.478 | 0.568 | Aghda | 24 |
1.32 | 0.204 | 0.786 | 0.451 | Yazd | 25 |
1.26 | 0.101 | 0.763 | 0.397 | Marvast | 26 |
1.87 | 0.158 | 0.298 | 0.374 | Sabzevar | 27 |
0.56 | 0.274 | 0.444 | 0.313 | Birjand | 28 |
1.54 | 0.369 | 0.476 | 0.553 | Ferdoos | 29 |
1.95 | 0.275 | 0.698 | 0.187 | Tabas | 30 |
0.42 | 0.399 | 0.771 | 0.195 | Karaj | 31 |
0.31 | 0.281 | 0.432 | 0.543 | Ghazvin | 32 |
1.58 | 0.186 | 0.304 | 0.229 | Hashtgerd | 33 |
0.01 | 0.168 | 0.454 | 0.304 | Abali | 34 |
0.48 | 0.147 | 0.538 | 0.34 | Takestan | 35 |
H1 = 0.64 H2 = −0.07 H3 = −0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesbahzadeh, T.; Miglietta, M.M.; Sardoo, F.S.; Krakauer, N.; Hasheminejad, M. Regional Analysis of Dust Day Duration in Central Iran. Appl. Sci. 2022, 12, 6248. https://doi.org/10.3390/app12126248
Mesbahzadeh T, Miglietta MM, Sardoo FS, Krakauer N, Hasheminejad M. Regional Analysis of Dust Day Duration in Central Iran. Applied Sciences. 2022; 12(12):6248. https://doi.org/10.3390/app12126248
Chicago/Turabian StyleMesbahzadeh, Tayyebeh, Mario Marcello Miglietta, Farshad Soleimani Sardoo, Nir Krakauer, and Mohammad Hasheminejad. 2022. "Regional Analysis of Dust Day Duration in Central Iran" Applied Sciences 12, no. 12: 6248. https://doi.org/10.3390/app12126248