AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance
Abstract
:1. Introduction
2. Method
2.1. Review of Conventional AB Semblance
2.2. High-Resolution AB Semblance with a PCA-Based Weighting Function
3. Experiments
3.1. Synthetic Data
3.2. Field Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Taner, M.T.; Koehler, F. Velocity spectra-digital computer derivation and applications of velocity functions. Geophysics 1969, 34, 859–881. [Google Scholar] [CrossRef]
- Neidell, N.S.; Taner, M.T. Semblance and other coherency measures for multichannel data. Geophysics 1971, 36, 482–497. [Google Scholar] [CrossRef]
- Mulder, W.A.; Kroode, A.P.E.T. Automatic velocity analysis by differential semblance optimization. Geophysics 2002, 67, 1184–1191. [Google Scholar] [CrossRef]
- Abbad, B.; Ursin, B.; Rappin, D. Automatic nonhyperbolic velocity analysis. Geophysics 2010, 75, u1–u12. [Google Scholar] [CrossRef]
- Fomel, S.; Landa, E. Structural uncertainty of time-migrated seismic images. J. Appl. Geophys. 2014, 101, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Ö.; Doherty, S.M. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data; Society of Exploration Geophysicists: Oklahoma City, OK, USA, 2001. [Google Scholar]
- Luo, S.; Hale, D. Velocity analysis using weighted semblance. Geophysics 2010, 77, U15–U22. [Google Scholar] [CrossRef]
- Larner, K.; Celis, V. Selective-coherence velocity analysis. Geophysics 2007, 21, U11. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, T.; Chen, X. Velocity analysis using similarity-weighted semblance. Geophysics 2015, 80, A75–A82. [Google Scholar] [CrossRef]
- Khoshnavaz, M.J. High-resolution seismic velocity analysis by sign-based weighted semblance. Geophysics 2021, 86, U135–U143. [Google Scholar] [CrossRef]
- Tang, Y.; Biondi, B. Subsalt velocity estimation by target-oriented wave-equation migration velocity analysis: A 3D field-data example. Geophysics 2013, 78, U19–U29. [Google Scholar] [CrossRef]
- Li, W.; Shingyu, L.; Qian, J. A level-set adjoint-state method for crosswell transmission-reflection traveltime tomography. Geophys. J. Int. 2014, 199, 348–367. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Peng, Z.; Li, Y. A framework for automatically choosing the optimal parameters of finite-difference scheme in the acoustic wave modeling. Comput. Geosci. 2022, 159, 104948. [Google Scholar] [CrossRef]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z. Robust full-waveform inversion based on particle swarm optimization. In SEG Technical Program Expanded Abstracts 2017; Society of Exploration Geophysicists: Oklahoma City, OK, USA, 2017; pp. 1302–1306. [Google Scholar]
- Biondi, B.L.; Kostov, C. High-resolution velocity spectra using eigenstructure methods. Geophysics 1989, 54, 832–842. [Google Scholar] [CrossRef] [Green Version]
- Abbad, B.; Ursin, B. High-resolution bootstrapped differential semblance. Geophysics 2012, 77, U39–U47. [Google Scholar] [CrossRef]
- Liu, G. High-resolution velocity analysis based on normalized bootstrapped differential semblance. Geophys. Prospect. Pet. 2014, 53, 530–536. [Google Scholar]
- Wilson, H.; Gross, L. Amplitude variation with offset-friendly bootstrapped differential semblance. Geophysics 2017, 82, V297–V309. [Google Scholar] [CrossRef]
- Key, S.C.; Smithson, S.B. New approach to seismic-reflection event detection and velocity determination. Geophysics 1990, 55, 1057–1069. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Kahoo, A.R.; Chen, Y.; Porsani, M. A high-resolution weighted AB semblance for dealing with amplitude-variation-with-offset phenomenon. Geophysics 2017, 82, V85–V93. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Kahoo, A.R.; Porsani, M.J.; Kalateh, A.N. Obtaining high-resolution velocity spectra using weighted semblance. Exploration. Geophysics 2017, 48, 210–218. [Google Scholar]
- Chen, G.; Yan, Z.; Wang, Z. High-resolution PCA-weighted semblance with friendly AVO phenomenon. SEG Technical Program Expanded Abstracts. In Proceedings of the 2018 SEG International Exposition and Annual Meeting, Anaheim, CA, USA, 14–19 October 2018. [Google Scholar]
- Gan, S.; Wang, S.; Chen, Y. Velocity analysis of simultaneous-source data using high-resolution semblance—Coping with the strong noise. Geophys. J. Int. 2016, 204, 768–779. [Google Scholar] [CrossRef] [Green Version]
- Deng, P.; Chen, Y.; Zhang, Y. Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity. J. Geophys. Eng. 2016, 13, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, S.R.; Williams, R.H. Amplitude-versus-offset variations in gas sands. Geophysics 1989, 54, 680–688. [Google Scholar] [CrossRef]
- Sarkar, D.; Baumel, R.T.; Larner, K.L. Velocity analysis in the presence of amplitude variation. Geophysics 2002, 67, 1664–1672. [Google Scholar] [CrossRef]
- Fomel, S. Velocity analysis using AB semblance. Geophys. Prospect. 2009, 57, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Fan, L.; Chen, G.; Li, J. AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance. Appl. Sci. 2022, 12, 6098. https://doi.org/10.3390/app12126098
Zhang C, Fan L, Chen G, Li J. AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance. Applied Sciences. 2022; 12(12):6098. https://doi.org/10.3390/app12126098
Chicago/Turabian StyleZhang, Chunlin, Liyong Fan, Guiting Chen, and Jijun Li. 2022. "AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance" Applied Sciences 12, no. 12: 6098. https://doi.org/10.3390/app12126098
APA StyleZhang, C., Fan, L., Chen, G., & Li, J. (2022). AVO-Friendly Velocity Analysis Based on the High-Resolution PCA-Weighted Semblance. Applied Sciences, 12(12), 6098. https://doi.org/10.3390/app12126098