Assessment of Termination Criteria at Each Drought Response Stage on Climate Change in a Multi-Purpose Dam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Watershed
2.2. Termination Criteria for Water Supply by Drought Response Stage
2.3. Method of Water Supply Capacity Assessment
3. Results
3.1. Selection of Climate Change Scenario for Application of Termination Criteria
3.2. Assessment of Water Supply Capacity by Climate Change Scenario
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ko, I.H. Development of Basic Technique for Integrated Water Resources Management in River Watershed. Water Manag. Policy Forum 2003, 77–117. Available online: https://www.opm.go.kr/flexer/view.do?ftype=hwp&attachNo=1172 (accessed on 29 December 2003).
- Choo, T.H.; Ko, H.S.; Yoon, H.C. The Estimation and Analysis of Miryang Dam Inflow based on RCP Scenario. J. Korea Acad. Ind. Coop. Soc. 2015, 16, 3469–3476. [Google Scholar] [CrossRef]
- Yun, Y.S. Hydrological Drought Analysis Using Dam Inflow Time Series Data; Konkuk University: Seoul, Korea, 2017; p. 1. [Google Scholar]
- K-Water. Improvement Report of Water Supply Adjustment Criteria. Available online: https://www.iwra.org/wp-content/uploads/2018/11/1-SWM-K-HIT-final.pdf (accessed on 30 August 2016).
- GBRA, Drought Contingency Plan for Guadalupe-Blanco River Authority. Guadalupe-Blanco River Authority. Available online: https://www.gbra.org/wp-content/uploads/2021/05/GBRADroughtContingencyPlan.pdf (accessed on 17 July 2019).
- Water Department, Drought Contingency Plan. City of Corpus Christi. Available online: https://www.cctexas.com/sites/default/files/WAT-drought-contingency-plan.pdf (accessed on 1 October 2018).
- Na, M.; Kim, J.; Kim, S.K. Development of Operating Guidelines of a Multi-reservoir System Using an Artificial Neural Network Model. IE Interfaces 2010, 23, 311–318. [Google Scholar]
- Kang, T.; Lee, S. Improvement of the Effect of a Reservoir of a Reservoir System Simulation under Floods for the Han River Basin by an Optimization Technique. J. Korean Soc. Hazard Mitig. 2015, 15, 119–127. [Google Scholar] [CrossRef]
- Lee, S.; Kang, T.; Lee, K.S. An Operational Model of a Reservoir System Simulation for Real-time Flood Control in the Han River Basin. J. Flood Risk Manag. 2015, 10, 499–510. [Google Scholar] [CrossRef]
- Shim, K.C.; Fontane, D.G.; Labadie, J.W. Spatial Decision Support System for Integrated River Basin Flood Control. J. Water Resour. Plan. Manag. 2002, 128, 190–201. [Google Scholar] [CrossRef]
- Shin, Y.L.; Maeng, S.J.; Ko, I.H.; Lee, H.K. Development of Reservoir Operation Model Using Simulation Technique in Flood Season (I). J. Korea Water Resour. Assoc. 2000, 33, 745–755. [Google Scholar]
- Lee, J.E.; Song, J.W. Evaluation of Water Supply Capacity for Multi-Purpose Dam Using Optimization and Simulation Techniques. J. Korean Soc. Civ. Eng. 2002, 22, 811–818. [Google Scholar]
- Kang, M.G.; Park, S.W. Assessment of Additional Water Supply Capacity Using a Reservoir Optimal Operation Model. J. Korea Water Resour. Assoc. 2005, 38, 937–946. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, T.U. An Evaluation Method of Water Supply Reliability for Dams by Firm Yield Analysis. J. Korea Water Resour. Assoc. 2006, 39, 467–478. [Google Scholar]
- Yu, J.S.; Shin, J.Y.; Kwon, M.; Kim, T.W. Bivariate Drought Frequency Analysis to Evaluate Water Supply Capacity of Multi-Purpose Dams. J. Korean Soc. Civ. Eng. 2017, 37, 231–238. [Google Scholar] [CrossRef]
- Moon, J.W.; Lee, D.R.; Choi, S.J.; Kang, S.K. An Assessment on the Water Supply Stability of Multi-purpose Dam Using Water Supply Capacity Index. In KWRA 2008 Convention; Korea Water Resources Association: Gyeongju, Korea, 2008; Volume 5, p. 314. [Google Scholar]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Lashkari, A.; Irannezhad, M.; Zare, H.; Labzovskii, L. Assessing Long-term Spatio-temporal Variability in Humidity and Drought in Iran Using Pedj Drought Index (PDI). J. Arid. Environ. 2021, 185, 104336. [Google Scholar] [CrossRef]
- Lee, D.R.; Moon, J.W.; Lee, D.H.; Ahn, J.H. Development of Water Supply Capacity Index to Monitor Droughts in a Reservoir. J. Korea Water Resour. Assoc. 2006, 39, 199–214. [Google Scholar]
- Seo, H.D.; Jeong, S.M.; Kim, S.J.; Lee, J.H. A Study on the Optimal Water Supply Using Virtual Drought Exercise with Hydrological Drought Index. J. Korea Water Resour. Assoc. 2008, 41, 1045–1058. [Google Scholar] [CrossRef]
- Lee, G.M. Water Supply Performance Assessment of Multi-purpose Dams Using Sustainability Index. J. Korea Water Resour. Assoc. 2014, 45, 411–420. [Google Scholar] [CrossRef]
- Kim, K.M.; Park, J.H.; Jang, S.H.; Kang, H.W. Development and Effective Analysis of Termination Criteria at Each Drought Response Stage in a Multipurpose Dam. J. Korean Soc. Hazard Mitig. 2018, 18, 23–31. [Google Scholar] [CrossRef]
- Kim, J.M.; Park, J.H.; Jang, S.H.; Kang, H.W.; Kim, S. Applicability Evaluation of Real-time Standard Flow Index to Develop Termination Criteria at Each Drought Response Stage on Multi-purpose Dams. J. Korean Soc. Hazard Mitig. 2017, 17, 411–420. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stcdinger, J.R.; Loucks, D.P. Reliability, Resiliency, and Vulnerability Criteria for Water Resource System Performance Evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, Y.; Yi, J. Improving the Water Yield Capabilities Using Reservoir Emergency Storage and Water Supply Adjustment Standard. J. Korea Water Resour. Assoc. 2016, 49, 1027–1034. [Google Scholar] [CrossRef]
- APCC. Development of Water Reservation Rate and Reservoir Operation Technologies for Climate Change Adaptation. CCAW & K-Water Institute Conservation. Available online: File:///C:/Users/Nier/Downloads/(2-1)APCC_%EA%B8%B0%EC%88%A0%EB%B3%B4%EA%B3%A0%EC%84%9C%20(1).pdf (accessed on 1 January 2018).
Storage | Value | Unit |
---|---|---|
Design Flood level | 179.0 | m |
Normal High-Water Level | 176.0 | m |
Ruling Water Level | 176.0 | m |
Low Water Level | 140.0 | m |
Water Supply Water Level | 114.4 | m |
Total Storage Capacity | 790.0 | 106 m3 |
Emergency Capacity | 130.0 | 106 m3 |
Annual Water Supply | 599.0 | 106 m3 |
Domestic, Industrial Water Supply | 520.0 | 106 m3 |
Agriculture Water Supply | 32.0 | 106 m3 |
River Maintenance Flow Supply | 47.0 | 106 m3 |
Drought Response Stage | Triggering Criteria for Water Supply from Multi-Purpose Dam | ||
---|---|---|---|
Original (2014) | Revised (2015) | Revised (2016) | |
Attention | Domestic and industrial water (design-contract) | Domestic and industrial water (design-contract) | Domestic and industrial water (design-contract) |
Caution | Attention + ecological water (100%) | Attention + ecological water (100%) | Attention + surplus water (domestic, industrial, irrigation) |
Alert | Caution + irrigation water (100%) | Caution + irrigation water (100%) | Caution + irrigation water (2~6: 20%, 7~9: 30%, other: 100%) |
Serious | Alert + partial reduction in water service contract of domestic and industrial water (qualitative reduction) | Alert + 10% of water service contract (domestic and industrial water) | Alert + 20% of water service contract (domestic and industrial water) |
Item | Condition |
Reservoir Storage Volume | When standard reservoir storage corresponds to the upper stage |
Standard Flow Index (SFI) | When SFI corresponds to the upper stage |
Maintenance Period | 15 days |
Rank | Reliability (Time) | Reliability (Supply) | ||
---|---|---|---|---|
RCP | Value | RCP | Value | |
1 | MPI-ESM-MR(RCP4.5) | 99.477 | MPI-ESM-MR(RCP4.5) | 99.731 |
2 | CanESM2(RCP8.5) | 99.407 | CanESM2(RCP8.5) | 99.697 |
3 | MPI-ESM-LR(RCP4.5) | 98.896 | MPI-ESM-LR(RCP4.5) | 99.448 |
4 | IPSL-CM5B-LR(RCP4.5) | 98.856 | IPSL-CM5B-LR(RCP4.5) | 99.422 |
5 | BCC-CSM1-1(RCP8.5) | 98.722 | BCC-CSM1-1(RCP4.5) | 99.343 |
6 | BCC-CSM1-1(RCP4.5) | 98.640 | BCC-CSM1-1(RCP8.5) | 99.334 |
7 | MRI-CGCM3(RCP8.5) | 98.582 | MRI-CGCM3(RCP8.5) | 99.256 |
8 | CESM1-BGC(RCP8.5) | 98.351 | CESM1-BGC(RCP8.5) | 99.157 |
9 | MP-ESM-MR(RCP8.5) | 98.345 | MP-ESM-MR(RCP8.5) | 99.133 |
10 | MRI-CGCM3(RCP4.5) | 98.284 | MRI-CGCM3(RCP4.5) | 99.104 |
11 | CanESM2(RCP4.5) | 98.123 | CanESM2(RCP4.5) | 99.054 |
12 | HadGEM2-CC(RCP8.5) | 97.810 | HadGEM2-CC(RCP8.5) | 98.908 |
13 | CNRM-CM5(RCP4.5) | 97.648 | CESM1-CAM5(RCP4.5) | 98.773 |
14 | HadGEM2-AO(RCP4.5) | 97.606 | CNRM-CM5(RCP4.5) | 98.744 |
15 | CESM1-CAM5(RCP4.5) | 97.588 | HadGEM2-AO(RCP4.5) | 98.738 |
16 | CNRM-CM5(RCP8.5) | 96.903 | CESM1-CAM5(RCP8.5) | 98.356 |
17 | MIROC-ESM-CHEM(RCP8.5) | 96.754 | CNRM-CM5(RCP8.5) | 98.335 |
18 | CESM1-CAM5(RCP8.5) | 96.739 | GFDL-ESM2M(RCP4.5) | 98.250 |
19 | GFDL-ESM2M(RCP4.5) | 96.696 | CESM1-BGC(RCP4.5) | 98.188 |
20 | CESM1-BGC(RCP4.5) | 96.623 | MIROC-ESM-CHEM(RCP8.5) | 98.156 |
21 | MIROC-ESM-CHEM(RCP4.5) | 96.593 | MIROC-ESM-CHEM(RCP4.5) | 98.154 |
22 | MPI-ESM-LR(RCP8.5)(RCP8.5) | 96.575 | MPI-ESM-LR(RCP8.5) | 98.133 |
23 | HadGEM2-AO(RCP8.5) | 96.362 | HadGEM2-AO(RCP8.5) | 98.006 |
24 | CMCC-CMS(RCP8.5) | 96.304 | CCSM4(RCP8.5) | 97.917 |
25 | CCSM4(RCP8.5) | 96.127 | CMCC-CMS(RCP8.5) | 97.832 |
26 | CCSM4(RCP4.5) | 95.410 | CCSM4(RCP4.5) | 97.510 |
27 | NorESM1-M(RCP4.5) | 95.053 | NorESM1-M(RCP4.5) | 97.390 |
28 | GFDL-ESM2M(RCP8.5) | 94.606 | GFDL-ESM2M(RCP8.5) | 97.136 |
29 | IPSL-CM5B-LR(RCP8.5) | 94.533 | MIROC-ESM(RCP4.5) | 97.065 |
30 | NorESM1-M(RCP8.5) | 94.415 | GFDL-ESM2G(RCP8.5) | 97.021 |
31 | MIROC-ESM(RCP4.5) | 94.378 | NorESM1-M(RCP8.5) | 96.983 |
32 | GFDL-ESM2G(RCP8.5) | 94.348 | IPSL-CM5B-LR(RCP8.5) | 96.972 |
33 | GFDL-ESM2G(RCP4.5) | 94.238 | GFDL-ESM2G(RCP4.5) | 96.893 |
34 | BCC-CSM1-1-M(RCP8.5) | 93.700 | BCC-CSM1-1-M(RCP8.5) | 96.637 |
35 | BCC-CSM1-1-M(RCP4.5) | 93.146 | BCC-CSM1-1-M(RCP4.5) | 96.415 |
36 | CMCC-CM(RCP4.5) | 92.988 | CMCC-CM(RCP4.5) | 96.298 |
37 | HadGEM2-ES(RCP8.5) | 92.924 | HadGEM2-ES(RCP8.5) | 96.202 |
38 | HadGEM2-CC(RCP4.5) | 92.465 | HadGEM2-CC(RCP4.5) | 95.871 |
39 | MRIOC5(RCP4.5) | 92.236 | MRIOC5(RCP4.5) | 95.760 |
40 | MRIOC5(RCP8.5) | 91.841 | MRIOC5(RCP8.5) | 95.571 |
41 | FGOALS-a2(RCP8.5) | 91.783 | FGOALS-a2(RCP8.5) | 95.413 |
42 | HadGEM2-ES(RCP4.5) | 91.607 | INM-CM4(RCP4.5) | 95.381 |
43 | INM-CM4(RCP4.5) | 91.290 | HadGEM2-ES(RCP4.5) | 95.301 |
44 | FGOALS-a2(RCP4.5) | 91.229 | IPSL-CM5A-LR(RCP4.5) | 95.171 |
45 | IPSL-CM5A-LR(RCP4.5) | 90.749 | FGOALS-a2(RCP4.5) | 95.096 |
46 | IPSL-CM5A-MR(RCP4.5) | 90.226 | IPSL-CM5A-MR(RCP4.5) | 94.709 |
47 | IPSL-CM5A-LR(RCP8.5) | 90.156 | IPSL-CM5A-LR(RCP8.5) | 94.536 |
48 | CMCC-CM(RCP8.5) | 89.191 | CMCC-CM(RCP8.5) | 94.304 |
49 | MIROC-ESM(RCP8.5) | 88.166 | MIROC-ESM(RCP8.5) | 93.269 |
50 | INM-CM4(RCP8.5) | 87.442 | INM-CM4(RCP8.5) | 93.111 |
51 | IPSL-CM5A-MR(RCP8.5) | 86.043 | IPSL-CM5A-MR(RCP8.5) | 91.881 |
52 | CMCC-CMS(RCP4.5) | 65.612 | CMCC-CMS(RCP4.5) | 79.911 |
Reliability (Time) | Reliability (Supply) | Resiliency (Day) | Vulnerability (Million m3) | |
---|---|---|---|---|
CMCC-CMS(RCP4.5) | 65.6 | 79.9 | 65.1 | 63.9 |
IPSL-CM5A-MR (RCP8.5) | 86.0 | 91.9 | 57.9 | 51.9 |
INM-CM4(RCP8.5) | 87.4 | 93.1 | 86.7 | 79.6 |
MIROC-ESM(RCP8.5) | 88.2 | 93.3 | 54.9 | 47.3 |
CMSM4(RCP4.5) (median) | 95.4 | 97.5 | 61.8 | 54.6 |
Additional Supply (Days) | CMCC-CMS(RCP4.5) | IPSL-CM5A-MR(RCP8.5) | INM-CM4(RCP8.5) | MIROC-ESM(RCP8.5) | CMSM4(RCP4.5) (Median) | |
---|---|---|---|---|---|---|
Total Period | Water for residential and industrial use | 52.0 days | 11.1 days | 10.1 days | 7.0 days | 8.1 days |
Water for residential, industrial, and agricultural use and river maintenance | 47.7 days | 10.2 days | 9.3 days | 6.5 days | 7.4 days | |
Additional Supply Storage (million m3) | 74.15 | 15.83 | 14.49 | 10.04 | 11.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, J.; Kwon, H. Assessment of Termination Criteria at Each Drought Response Stage on Climate Change in a Multi-Purpose Dam. Appl. Sci. 2022, 12, 5801. https://doi.org/10.3390/app12125801
Kim J, Park J, Kwon H. Assessment of Termination Criteria at Each Drought Response Stage on Climate Change in a Multi-Purpose Dam. Applied Sciences. 2022; 12(12):5801. https://doi.org/10.3390/app12125801
Chicago/Turabian StyleKim, Jungmin, Jinhyeog Park, and Heongak Kwon. 2022. "Assessment of Termination Criteria at Each Drought Response Stage on Climate Change in a Multi-Purpose Dam" Applied Sciences 12, no. 12: 5801. https://doi.org/10.3390/app12125801
APA StyleKim, J., Park, J., & Kwon, H. (2022). Assessment of Termination Criteria at Each Drought Response Stage on Climate Change in a Multi-Purpose Dam. Applied Sciences, 12(12), 5801. https://doi.org/10.3390/app12125801