Photonic Generation of Reconfigurable Ternary Modulated Microwave Signals with a Large Frequency Range
Abstract
:1. Introduction
2. Principle
2.1. Generation of ASK Signal
2.2. Generation of PSK Signal
2.3. Generation of LFM Signal
3. Results and Analysis
3.1. Generation of ASK Signal
3.2. Generation of PSK Signal
3.3. Generation of LFM Signal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Z.; Qian, Y. Modern Communication Principle; Tsinghua University: Beijing, China, 1992. [Google Scholar]
- Ghelfi, P.; Laghezza, F.; Scotti, F.; Serafino, G.; Capria, A.; Pinna, S.; Onori, D.; Porzi, C.; Scaffardi, M.; Malacarne, A.; et al. A fully photonics-based coherent radar system. Nature 2014, 507, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, H.; Yu, C.; Cheng, X.; Yeo, Y.K.; Kam, P.-K.; Yang, J.; Zhang, H.; Wen, Y.-H.; Feng, K.-M. An All-Optical Modulation Format Conversion for 8QAM Based on FWM in HNLF. IEEE Photon Technol. Lett. 2012, 25, 327–330. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, L.; Wang, J. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator. Sci. Rep. 2016, 6, 20215. [Google Scholar] [CrossRef]
- Ghelfi, P.; Laghezza, F.; Scotti, F.; Onori, D.; Bogoni, A. Photonics for Radars Operating on Multiple Coherent Bands. J. Light. Technol. 2015, 34, 500–507. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Y. Microwave photonic radars. J. Lightwave Technol. 2020, 38, 5450–5484. [Google Scholar] [CrossRef]
- Zhai, W.; Wen, A. Microwave Photonic Multifunctional Phase Coded Signal Generator. IEEE Photon Technol. Lett. 2019, 31, 1377–1380. [Google Scholar] [CrossRef]
- Zhu, D.; Xu, W.; Wei, Z.; Pan, S. Multi-frequency phase-coded microwave signal generation based on polarization modulation and balanced detection. Opt. Lett. 2015, 41, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Xue, X.; Li, S.; Zheng, X.; Xiao, X.; Zha, Y.; Zhou, B. Photonic generation of multi-frequency phase-coded microwave signal based on a dual-output Mach-Zehnder modulator and balanced detection. Opt. Express 2017, 25, 14516–14523. [Google Scholar] [CrossRef]
- Brunetti, G.; Armenise, M.N.; Ciminelli, C. Chip-Scaled Ka-Band Photonic Linearly Chirped Micro-wave Waveform Generator. Front. Phys. 2022, 10, 785650. [Google Scholar] [CrossRef]
- Yao, J. Photonic generation of microwave arbitrary waveforms. Opt. Commun. 2011, 284, 3723–3736. [Google Scholar] [CrossRef]
- Men, Y.; Wen, A.; Li, Y.; Tong, Y. Photonic approach to flexible multi-band linearly frequency modulated microwave signals generation. Opt. Lett. 2021, 46, 1696–1699. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, S.; Lin, T.; Li, X.; Jiang, W.; Wang, G. Photonic generation of multi-frequency dual-chirp microwave waveform with multiplying band-width. Results Phys. 2019, 13, 102226. [Google Scholar] [CrossRef]
- Liang, D.; Shi, T.; Chen, Y. Photonic Generation of Multi-Band Linearly Frequency-Modulated Signal Based on a Dual-Parallel MZM. IEEE Photon Technol. Lett. 2021, 33, 275–278. [Google Scholar] [CrossRef]
- Liu, X.; Wei, X.; Su, Y.; Leuthold, J.; Kao, Y.-H.; Kang, I.; Giles, R. Transmission of an ASK-Labeled RZ-DPSK Signal and Label Erasure Using a Saturated SOA. IEEE Photon Technol. Lett. 2004, 16, 1594–1596. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, C.; Xin, X.; Bo, L. Novel high-speed orthogonal optical label switching technology based on the 8PSK modulation. Infrared Laser Eng. 2010, 39, 103–105. [Google Scholar]
- Nie, H.; Zhang, F.; Yang, Y.; Pan, S. Photonics-based integrated communication and radar system. In Proceedings of the 2019 International Topical Meeting on Mi-Crowave Photonics (MWP), Ottawa, ON, Canada, 7–10 October 2019. [Google Scholar]
- Wang, Y.; Liu, J.; Ding, J.; Wang, M.; Zhao, F.; Yu, J. A novel joint communication and radar sensing functions system based on photonics at W-band. Opt. Express 2022, 30, 13404–13415. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Yi, Y. Research on Radar Communication Integrated Signal Based on 64QAM-LFM. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China, 28 June–2 July 2021. [Google Scholar]
- Shi, S.; Zhao, Z.; Liu, J. Comparison of radar waveforms combining pseudo-random binary phase coding and chirp modulation for an high-frequency monostatic radar. IET Radar Sonar Navig. 2016, 10, 935–944. [Google Scholar] [CrossRef]
- Ma, J.; Wen, A.; Tu, Z.; Cheng, X.; Wang, Y. Reconfigurable Photonic Generation of Binary Modulated Microwave Signals. IEEE Photon J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Li, G.; Shi, D.; Jia, Z.; Wang, L.; Li, M.; Zhu, N.H.; Li, W. Photonic Scheme for the Generation of Background-Free Phase-Coded Microwave Pulses and Dual-Chirp Microwave Waveforms. IEEE Photon J. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, S.; Wen, A.; Zhai, W.; Lin, T.; Li, X.; Wang, G.; Li, H. Photonics-based multi-band linearly frequency modulated signal generation and anti-chromatic dispersion transmission. Opt. Express 2020, 28, 8350–8362. [Google Scholar] [CrossRef]
- Zhu, D.; Yao, J. Dual-Chirp Microwave Waveform Generation Using a Dual-Parallel Mach-Zehnder Modulator. IEEE Photon Technol. Lett. 2015, 27, 1410–1413. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Zeng, C.; Zhong, Y.; Guo, Z.; Guo, G.; Li, Z.; Ren, H.; Xie, S.; Liang, H.; Zheng, G. Photonic Generation of Reconfigurable Ternary Modulated Microwave Signals with a Large Frequency Range. Appl. Sci. 2022, 12, 5777. https://doi.org/10.3390/app12125777
Han Y, Zeng C, Zhong Y, Guo Z, Guo G, Li Z, Ren H, Xie S, Liang H, Zheng G. Photonic Generation of Reconfigurable Ternary Modulated Microwave Signals with a Large Frequency Range. Applied Sciences. 2022; 12(12):5777. https://doi.org/10.3390/app12125777
Chicago/Turabian StyleHan, Yishi, Changsheng Zeng, Yongming Zhong, Zhongguo Guo, Guanfeng Guo, Zhongkun Li, Hongyi Ren, Shaowu Xie, Hongxia Liang, and Gengxin Zheng. 2022. "Photonic Generation of Reconfigurable Ternary Modulated Microwave Signals with a Large Frequency Range" Applied Sciences 12, no. 12: 5777. https://doi.org/10.3390/app12125777
APA StyleHan, Y., Zeng, C., Zhong, Y., Guo, Z., Guo, G., Li, Z., Ren, H., Xie, S., Liang, H., & Zheng, G. (2022). Photonic Generation of Reconfigurable Ternary Modulated Microwave Signals with a Large Frequency Range. Applied Sciences, 12(12), 5777. https://doi.org/10.3390/app12125777