A Novel Algorithm for Local Network Alignment Based on Network Embedding
Abstract
:1. Introduction
2. Related Work
3. Workflow of the Proposed Algorithm
4. Embedding Scenarios
4.1. Case Study 1: Evaluation of the Similarity of Embeddings
Algorithm 1 Comparing Node Similarities as Rankings |
|
4.2. Case Study 2: Alignment of the Protein Interaction Network
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PIN | Protein Interaction Network |
LNA | Local Network Alignment |
GNA | Global Network Alignment |
RBO | Rank-Biased Overlap Score |
GDV | Graphlet Degree Vector |
MCL | Markov Clustering Algorithm |
References
- Guzzi, P.H.; Milenković, T. Survey of local and global biological network alignment: The need to reconcile the two sides of the same coin. Briefings Bioinform. 2018, 19, 472–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agapito, G.; Cannataro, M.; Guzzi, P.H.; Marozzo, F.; Talia, D.; Trunfio, P. Cloud4SNP: Distributed analysis of SNP microarray data on the cloud. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, Washington, DC, USA, 22–25 September 2013; pp. 468–475. [Google Scholar]
- Bargmann, C.I.; Marder, E. From the connectome to brain function. Nat. Methods 2013, 10, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ortuso, F.; Mercatelli, D.; Guzzi, P.H.; Giorgi, F.M. Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J. Biomol. Struct. Dyn. 2021, 1–11. [Google Scholar] [CrossRef]
- Guzzi, P.H.; Tradigo, G.; Veltri, P. Using dual-network-analyser for communities detecting in dual networks. BMC Bioinform. 2021, 22, 1–16. [Google Scholar] [CrossRef]
- Cristiano, F.; Veltri, P. Methods and techniques for miRNA data analysis. Methods Mol. Biol. 2016, 1375, 11–23. [Google Scholar]
- Cannataro, M.; Guzzi, P.H.; Mazza, T.; Tradigo, G.; Veltri, P. Using ontologies for preprocessing and mining spectra data on the Grid. Future Gener. Comput. Syst. 2007, 23, 55–60. [Google Scholar] [CrossRef]
- Guzzi, P.H.; Di Martino, M.T.; Tradigo, G.; Veltri, P.; Tassone, P.; Tagliaferri, P.; Cannataro, M. Automatic summarisation and annotation of microarray data. Soft Comput. 2011, 15, 1505–1512. [Google Scholar] [CrossRef]
- Tradigo, G.; De Rosa, S.; Vizza, P.; Fragomeni, G.; Guzzi, P.H.; Indolfi, C.; Veltri, P. Calculation of Intracoronary Pressure-Based Indexes with JLabChart. Appl. Sci. 2022, 12, 3448. [Google Scholar] [CrossRef]
- Ren, Y.; Sarkar, A.; Veltri, P.; Ay, A.; Dobra, A.; Kahveci, T. Pattern discovery in multilayer networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 741–752. [Google Scholar] [CrossRef]
- Cannataro, M.; Guzzi, P.H.; Sarica, A. Data Mining and Life Sciences Applications on the Grid. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; Wiley: Hoboken, NJ, USA, 2013; Volume 3, pp. 216–238. [Google Scholar]
- Tradigo, G.; Vizza, P.; Fragomeni, G.; Veltri, P. On the reliability of measurements for a stent positioning simulation system. Int. J. Med. Inform. 2019, 123, 23–28. [Google Scholar] [CrossRef]
- Cho, Y.R.; Mina, M.; Lu, Y.; Kwon, N.; Guzzi, P.H. M-finder: Uncovering functionally associated proteins from interactome data integrated with go annotations. Proteome Sci. 2013, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milenković, T.; Leong, W.; Pržulj, N. Optimal network Alignment with Graphlet Degree Vectors. Cancer Inf. 2010, 9, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Nassa, G.; Tarallo, R.; Guzzi, P.H.; Ferraro, L.; Cirillo, F.; Ravo, M.; Nola, E.; Baumann, M.; Nyman, T.A.; Cannataro, M.; et al. Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells. Mol. Biosyst. 2011, 7, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.; Guzzi, P.H. Improving the robustness of local network alignment: Design and extensive assessment of a Markov Clustering-based approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Grillone, K.; Riillo, C.; Scionti, F.; Rocca, R.; Tradigo, G.; Guzzi, P.H.; Alcaro, S.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter”. J. Exp. Clin. Cancer Res. 2020, 39, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, P.H.; Agapito, G.; Cannataro, M. coresnp: Parallel processing of microarray data. IEEE Trans. Comput. 2013, 63, 2961–2974. [Google Scholar] [CrossRef]
- Milano, M.; Milenković, T.; Cannataro, M.; Guzzi, P.H. L-HetNetAligner: A novel algorithm for local alignment of heterogeneous biological networks. Sci. Rep. 2020, 10, 3901. [Google Scholar] [CrossRef] [Green Version]
- Milano, M.; Guzzi, P.H.; Tymofieva, O.; Xu, D.; Hess, C.; Veltri, P.; Cannataro, M. An extensive assessment of network alignment algorithms for comparison of brain connectomes. Bmc Bioinform. 2017, 18, 31–45. [Google Scholar] [CrossRef]
- Milano, M.; Guzzi, P.H.; Cannataro, M. Glalign: A novel algorithm for local network alignment. IEEE/Acm Trans. Comput. Biol. Bioinform. 2018, 16, 1958–1969. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. arXiv 2017, arXiv:1709.05584. [Google Scholar]
- Gu, S.; Jiang, M.; Guzzi, P.H.; Milenković, T. Modeling multi-scale data via a network of networks. Bioinformatics 2022, 38, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Kukic, P.; Mirabello, C.; Tradigo, G.; Walsh, I.; Veltri, P.; Pollastri, G. Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks. BMC Bioinform. 2014, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Wang, X.; Pei, J.; Zhu, W. A survey on network embedding. IEEE Trans. Knowl. Data Eng. 2018, 31, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Tong, J.; Zhu, Y.; Cui, P.; Wang, F. Network embedding in biomedical data science. Briefings Bioinform. 2020, 21, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.; Zitnik, M.; Wang, B.; Leskovec, J.; Goldenberg, A.; Sharan, R. To embed or not: Network embedding as a paradigm in computational biology. Front. Genet. 2019, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl. Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef] [Green Version]
- Guzzi, P.H.; Cannataro, M. μ-CS: An extension of the TM4 platform to manage Affymetrix binary data. BMC Bioinform. 2010, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- Mirarchi, D.; Petrolo, C.; Canino, G.; Vizza, P.; Cuomo, S.; Chiarella, G.; Veltri, P. Applying mining techniques to analyze vestibular data. Procedia Comput. Sci. 2016, 98, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, VIC, Australia, 19–23 October 2015; pp. 891–900. [Google Scholar]
- Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1105–1114. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Cao, S.; Lu, W.; Xu, Q. Deep neural networks for learning graph representations. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234. [Google Scholar]
- van Dongen, S. Graph Clustering by Flow Simulation. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands, 2000. [Google Scholar]
- NetworkX.org. NetworkX Libary for Network Analysis in Python. 2020. Available online: https://networkx.org/ (accessed on 20 April 2022).
- Webber, W.; Moffat, A.; Zobel, J. A similarity measure for indefinite rankings. Acm Trans. Inf. Syst. 2010, 28, 1–38. [Google Scholar] [CrossRef]
- Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection. 2014. Available online: http://snap.stanford.edu/data (accessed on 20 April 2022).
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef] [Green Version]
Networks | R2-0 | R2-5 | R2-10 | R2-15 | R2-20 | R2-25 | R2-50 |
---|---|---|---|---|---|---|---|
R1-0 | 0.98 | 0.96 | 0.93 | 0.94 | 0.97 | 0.95 | 0.97 |
R1-5 | 0.98 | 0.96 | 0.96 | 0.96 | 0.95 | 0.96 | 0.98 |
R1-10 | 0.98 | 0.96 | 0.96 | 0.93 | 0.96 | 0.95 | 0.96 |
R1-15 | 0.96 | 0.92 | 0.93 | 0.92 | 0.96 | 0.93 | 0.93 |
R1-20 | 0.95 | 0.96 | 0.93 | 0.96 | 0.96 | 0.96 | 0.96 |
R1-25 | 0.91 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.91 |
R1-50 | 0.92 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
R2-0 | R2-5 | R2-10 | R2-15 | R2-20 | R2-25 | R2-50 | |
---|---|---|---|---|---|---|---|
R1-0 | 0.97 | 0.93 | 0.91 | 0.88 | 0.82 | 0.93 | 0.80 |
R1-5 | 0.98 | 0.93 | 0.93 | 0.95 | 0.92 | 0.76 | 0.91 |
R1-10 | 0.97 | 0.96 | 0.79 | 0.80 | 0.84 | 0.77 | 0.92 |
R1-15 | 0.95 | 0.81 | 0.89 | 0.83 | 0.74 | 0.90 | 0.89 |
R1-20 | 0.95 | 0.79 | 0.93 | 0.82 | 0.86 | 0.81 | 0.87 |
R1-25 | 0.90 | 0.91 | 0.83 | 0.73 | 0.92 | 0.90 | 0.73 |
R1-50 | 0.92 | 0.75 | 0.77 | 0.73 | 0.85 | 0.80 | 0.72 |
R2-0 | R2-5 | R2-10 | R2-15 | R2-20 | R2-25 | R2-50 | |
---|---|---|---|---|---|---|---|
R1-0 | 0.97 | 0.94 | 0.80 | 0.91 | 0.86 | 0.80 | 0.88 |
R1-5 | 0.97 | 0.88 | 0.89 | 0.89 | 0.85 | 0.85 | 0.81 |
R1-10 | 0.98 | 0.92 | 0.83 | 0.81 | 0.84 | 0.89 | 0.79 |
R1-15 | 0.95 | 0.85 | 0.86 | 0.84 | 0.87 | 0.81 | 0.77 |
R1-20 | 0.95 | 0.93 | 0.89 | 0.78 | 0.79 | 0.82 | 0.80 |
R1-25 | 0.91 | 0.91 | 0.85 | 0.86 | 0.80 | 0.85 | 0.82 |
R1-50 | 0.92 | 0.82 | 0.83 | 0.88 | 0.81 | 0.72 | 0.71 |
DEC vs. DEC-5 | DEC vs. DEC-10 | DEC vs. DEC-15 | DEC vs. DEC-20 | DEC vs. DEC-25 | DEC vs. DEC-50 | |
---|---|---|---|---|---|---|
EMB-Align | 0.97 | 0.90 | 0.80 | 0.83 | 0.75 | 0.66 |
Align-MCL | 0.92 | 0.88 | 0.75 | 0.71 | 0.64 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzzi, P.H.; Tradigo, G.; Veltri, P. A Novel Algorithm for Local Network Alignment Based on Network Embedding. Appl. Sci. 2022, 12, 5403. https://doi.org/10.3390/app12115403
Guzzi PH, Tradigo G, Veltri P. A Novel Algorithm for Local Network Alignment Based on Network Embedding. Applied Sciences. 2022; 12(11):5403. https://doi.org/10.3390/app12115403
Chicago/Turabian StyleGuzzi, Pietro Hiram, Giuseppe Tradigo, and Pierangelo Veltri. 2022. "A Novel Algorithm for Local Network Alignment Based on Network Embedding" Applied Sciences 12, no. 11: 5403. https://doi.org/10.3390/app12115403
APA StyleGuzzi, P. H., Tradigo, G., & Veltri, P. (2022). A Novel Algorithm for Local Network Alignment Based on Network Embedding. Applied Sciences, 12(11), 5403. https://doi.org/10.3390/app12115403