The Mortars of Florence Riverbanks: Raw Materials and Technologies of Lungarni Historical Masonry
Abstract
:1. Introduction
2. Florence Riverbanks
3. Macroscopic Description
4. Analytical Methods
4.1. Chemical, Minero-Petrographic Characterization
- -
- Petrographic investigation of thin sections (30 µm thickness) was carried out through observation in transmitted light with an optical microscope (OM). In the case of mortars, the petrographic approach permits accurate characterization of binder, aggregate, lump, and inorganic additives and admixtures [33,37,38,39,40,41]. In some cases, the observation of lumps in the thin section, as reported by several contributers, allows recognition of the type of carbonate rock burnt in the kiln. Lumps, indeed, can be due to binder not being well mixed in the paste, to under-burnt fragments (remnants of under-burnt limestone), to overburnt fragments of limestone, or to hydrated and carbonated overburnt fragments after the setting reaction of the mortar [33,40,42,43,44]. A Zeiss Axioscope A.1 microscope with a camera to obtain images and dedicated software for image elaboration and measuring of main characteristics of materials (AxioVision, Carl Zeiss Microscopy, LLC, White Plains, NY, USA) was used.
- -
- X-ray diffractometry (XRD) using a Philips X’Pert PRO on powders was employed to determine the mineralogical composition using Cu anticathode (l = 1.54 Å), under the following conditions: current intensity of 30 mA, voltage 40 kV, explored 2ϴ range between 3 and 70°, step size 0.02°, and time to step 50 s. The XRD analyses were performed on powder bulk samples and on selected lumps.
- -
- Thermo-gravimetric analysis (TGA) was employed for binder characterization of mortars. Some fragments of each sample were disaggregated using a porcelain pestle, and the fraction passing through a sieve with 63 µm openings (ISO R 565 Series) was considered as a binder-enriched specimen. TGA was used to evaluate the presence and the amount of volatile compounds (essentially H2O, CO2) in the samples. TGA was conducted in the range 110–1000 °C on about 5 mg of sample, dried (silica gel as drying agent) at room temperature for at least a week under the following experimental conditions: open alumina crucibles, heating rate of 10 °C/min, and 30 mL/min nitrogen gas flow. TGA was used for classifying the studied samples as non-hydraulic mortars or hydraulic ones as suggested by most authors [20,44,45]. TGA analyses were performed using a Perkin Elmer Pyris 6 system on historic mortar samples.
- -
- Fourier transform infrared spectroscopy (FTIR) was employed for the determination of the composition of selected lumps through a Bruker spectrometer equipped with an ATR system. The spectra obtained from the analysis of the powdered sample were acquired and processed using OPUS 7.2 software (Bruker Optics GmbH, Ettlingen, Germany). The acquisition was carried out in the spectral range between 4000 and 400 cm−1, with a resolution of 4 cm−1 for 24 scans.
4.2. Physico-Mechanical Characterization
- -
- photogrammetric processing of the samples, delivering an orthophoto of each surface;
- -
- 1:1 scale reproduction of the image;
- -
- area calculation of mortar, coarse aggregates, and voids;
- -
- calculation of the percentage values of each component with respect to the total area.
5. Results and Discussion
5.1. Chemical, Minero-Petrographic Results
5.2. Physico-Mechanical Results
5.3. Final Remarks
- -
- Type X (historic mortar with decametric-sized coarse aggregates) is located both in the Lungarno degli Acciaiuoli and in the Lungarno delle Grazie. The mortar consists of a natural hydraulic lime binder produced through traditional technologies, suggesting a historical origin. The last documented interventions on the riverbanks of Lungarno degli Acciaiuoli and Lungarno delle Grazie date back to the 13th century, but probably some restoration works were realized in the past. The hydraulic characteristics allow hardening and preservation in time in conditions of high humidity or in an underwater environment.
- -
- Type Y (historic mortar with centimetric-sized coarse aggregates) is located both in the Lungarno degli Acciaiuoli and in the Lungarno delle Grazie; as in the X type, the mortar has natural hydraulic lime binder (obtained burning Pietra Alberese, identified by under-burnt fragments) and historical origin. The core samples, which come from the higher portion of the riverbank wall, probably were built successively. High masonry was more probably destroyed during the floods.
- -
- Types Z and W (modern mortar with millimeter-sized coarse aggregates and modern mortar with centimeter-sized coarse aggregates) are only present in the C4 and C5 cores of the Lungarno degli Acciaiuoli, corresponding to the portion of the embankment restored after the destruction of 1966 (Figure 1b). For types Z and W, the petrographic analysis shows a binder with heterogeneous structure and micritic/microsparitic texture and remains of unhydrated clinker; the aggregate composition is similar, the B/A is 1/3, and the macroporosity is low. These types have been produced through modern cement technology. The physical analyses show similar results between Z and W; therefore, the effective porosity, the total imbibition coefficient, and the capillary water absorption are much lower than types X and Y. Furthermore, the mechanical test results are equal for both types, but are higher compared to X and Y. These results confirm that the Z and W types are produced with modern and standard technologies, as the analyzed samples have a similar performance.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rovero, L.; Fratini, F. The Medina of Chefchaouen (Morocco): A survey on morphological and mechanical features of the masonries. Constr. Build. Mater. 2013, 47, 465–479. [Google Scholar] [CrossRef]
- Rovero, L.; Alecci, V.; Mechelli, J.; Tonietti, U.; De Stefano, M. Masonry walls with irregular texture of L’Aquila (Italy) seismic area: Validation of a method for the evaluation of masonry quality. Mater. Struct. 2016, 49, 2297–2314. [Google Scholar] [CrossRef]
- Akcay, C.; Sayin, B.; Yildizlar, B. The conservation and repair of historical masonry ruins based on laboratory analyses. Constr. Build. Mater. 2017, 132, 383–394. [Google Scholar] [CrossRef]
- Sýkora, M.; Diamantidis, D.; Holický, M.; Marková, J.; Rózsás, Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Constr. Build. Mater. 2018, 193, 196–210. [Google Scholar] [CrossRef]
- Boschi, S.; Galano, L.; Vignoli, A. Mechanical characterisation of Tuscany masonry typologies by in situ tests. Bull. Earthq. Eng. 2019, 17, 413–438. Available online: https://link.springer.com/article/10.1007/s10518-018-0451-4 (accessed on 18 August 2018). [CrossRef]
- Drdácký, M.; Fratini, F.; Frankeová, D.; Slížková, Z. The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy)—A comprehensive assessment. Constr. Build. Mater. 2013, 38, 1117–1128. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Castori, G.; De Maria, A. A method for the analysis and classification of historic masonry. Bull. Earthq. Eng. 2015, 13, 2647–2665. Available online: https://link.springer.com/article/10.1007/s10518-015-9731-4 (accessed on 6 February 2015). [CrossRef]
- Franzini, M.; Leoni, L.; Lezzerini, M.; Sartori, F. The mortar of the “Leaning Tower” of Pisa: The product of a medieval technique for preparing high-strength mortars. Eur. J. Mineral. 2000, 12, 1151–1163. [Google Scholar] [CrossRef]
- Lanas, J.; Sirera, R.; Alvarez, J.I. Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under different conditions. Cem. Concr. Res. 2006, 36, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Papayianni, I. The longevity of old mortars. Appl. Phys. A Mater. Sci. Process. 2006, 83, 685–688. Available online: https://link.springer.com/article/10.1007/s00339-006-3523-2 (accessed on 4 April 2006). [CrossRef]
- Ponce-Anton, G.; Arizzi, A.; Zuluaga, M.C.; Cultrone, G.; Ortega, L.A.; Mauleon, J.A. Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi Castle lime mortars (Navarre, Spain). Materials 2019, 12, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moropoulou, A.; Bakolas, P.; Moundoulas, E.; Aggelakopoulou, E. Reverse engineering: A proper methodology for compatible restoration of mortars. In Proceedings of the Workshop on Repair Mortars for Historic Masonries, RILEM Technical Committee, Delft, The Netherlands, 26–28 January 2005. [Google Scholar]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Buil. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Aggelakopoulou, E.; Bakolas, A.; Moropoulou, A. Compatible mortars for the sustainable conservation of stone in masonries. In Advanced Materials for the Conservation of Stone, 1st ed.; Hosseini, M., Karapanagiotis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 97–123. [Google Scholar]
- Lugli, S.; Caroselli, M.; Marchetti Dori, S.; Vandelli, V.; Marzani, G.; Segattini, R.; Bianchi, C.; Weber, J. Building materials and degradation phenomena of the Finale Emilia Town Hall (Modena): An archaeometric study for the restoration project after the 2012 earthquake. Period. Di Mineral. 2016, 85, 59–67. [Google Scholar]
- Pazzi, V.; Lotti, A.; Chiara, P.; Lombardi, L.; Nocentini, M.; Casagli, N. Monitoring of the vibration induced on the Arno masonry embankment wall by the conservation works after the 25 May 2016 riverbank landslide. Geoenviron. Disasters 2017, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Morelli, S.; Pazzi, V. Characterization and geotechnical investigations of a riverbank failure in Florence, Italy, an UNESCO World Heritage Site. J. Geotech. Geoenviron. 2020, 146, 05020009. [Google Scholar] [CrossRef]
- Aragon, G.; Aragon, A.; Santamaria, A.; Esteban, A.; Fiol, F. Physical and mechanical characterization of a commercial rendering mortar using destructive and non-destructive techniques. Constr. Build. Mater. 2019, 224, 835–849. [Google Scholar] [CrossRef]
- Elsen, J. Microscopy of historic mortars—A review. Cem. Concr. Res. 2006, 36, 1416–1424. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Bisbikou, K. Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim. Acta 1995, 269, 779–795. [Google Scholar] [CrossRef]
- Miriello, D.; Antonelli, F.; Apollaro, C.; Bloise, A.; Bruno, N.; Catalano, M.; Columbu, S.; Crisci, G.M.; De Luca, R.; Lezzerini, M.; et al. A petro-chemical study of ancient mortars from the archaeological site of Kyme (Turkey). Per. Miner. 2015, 84, 497–517. [Google Scholar] [CrossRef]
- Miriello, D.; Bloise, A.; Crisci, G.M.; De Luca, R.; De Nigris, B.; Martellone, A.; Osanna, M.; Pace, R.; Pecci, A.; Ruggieri, N. New compositional data on ancient mortars and plasters from Pompeii (Campania—Southern Italy): Archaeometric results and considerations about their time evolution. Mater. Charact. 2018, 146, 189–203. [Google Scholar] [CrossRef]
- Riccardi, M.P.; Lezzerini, M.; Carò, F.; Franzini, M.; Messiga, B. Microtextural and microchemical studies of hydraulic ancient mortars: Two analytical approaches to understand pre-industrial technology processes. J. Cult. Herit. 2007, 8, 350–360. [Google Scholar] [CrossRef]
- Rampazzi, L.; Colombini, M.P.; Conti, C.; Corti, C.; Lluveras-Tenorio, A.; Sansonetti, A.; Zanaboni, M. Technology of medieval mortars: An investigation into the use of organic additives. Archaeometry 2016, 58, 115–130. [Google Scholar] [CrossRef]
- Cardoso, I.; Macedo, M.F.; Vermeulen, F.; Corsi, C.; Santos Silva, A.; Rosado, L.; Candeias, A.; Mirao, J. A Multidisciplinary approach to the study of archaeological mortars from the Town of Ammaia in the Roman Province of Lusitania (Portugal): Archaeological mortars from the Roman town of Ammaia (Lusitania; Portugal). Archaeometry 2014, 56, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Secco, M.; Previato, C.; Addis, A.; Zago, G.; Kamsteeg, A.; Dilaria, S.; Canovaro, C.; Artioli, G.; Bonetto, J. Mineralogical clustering of the structural mortars from the Sarno Baths, Pompeii: A tool to interpret construction techniques and relative chronologies. J. Cult. Herit. 2019, 40, 265–273. [Google Scholar] [CrossRef]
- Del Monte, E.; Boschi, S.; Vignoli, A. Prediction of compression strength of ancient mortars through in situ drilling resistance technique. Constr. Build. Mater. 2020, 237, 117563. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Gu, R.; Cao, S. New local compression test to estimate in situ compressive strength of masonry mortar. J. Test. Eval. 2016, 44, 67–76. [Google Scholar] [CrossRef]
- Pelà, L.; Roca, P.; Aprile, A. Combined in-situ and laboratory minor destructive testing of historical mortars. Int. J. Archit. Herit. 2018, 12, 334–349. [Google Scholar] [CrossRef]
- Fanelli, G. Firenze, Architettura e Città. Atlante; Vallecchi: Florence, Italy, 1973. [Google Scholar]
- Balzanetti Steiner, G. Tra Città e Fiume i Lungarni di Firenze; Alinea: Florence, Italy, 1989; p. 142. [Google Scholar]
- Villani, G. Cronica di Giovanni Villani: A Miglior Lezione Ridotta, 1st ed.; Sansoni: Florence, Italy, 1537. [Google Scholar]
- Pecchioni, E.; Fratini, F.; Pandeli, E.; Cantisani, E.; Vettori, S. Pietraforte, the Florentine building material from the Middle Ages to contemporary architecture. Episodes 2021, 44, 259–271. [Google Scholar] [CrossRef]
- Fratini, F.; Pecchioni, E.; Cantisani, E.; Rescic, S.; Vettori, S. Pietra Serena: The stone of the Renaissance. Geolog. Soc. Lond. Spec. Publ. 2014, 407, 173–186. [Google Scholar] [CrossRef]
- Fratini, F.; Cantisani, E.; Pecchioni, E.; Pandeli, E.; Vettori, S. Pietra Alberese: Building material and stone for lime in the Florentine Territory (Tuscany, Italy). Heritage 2020, 3, 1520–1538. [Google Scholar] [CrossRef]
- Deere, D.U.; Deere, D.W. Rock Quality Designation (RQD) after Twenty Years; Rocky Mountain Consultants, Inc.: Longmont, CO, USA, 1989. [Google Scholar]
- Pecchioni, E.; Fratini, F.; Cantisani, E. Atlas of the Ancient Mortars in Thin Section under Optical Microscope, 2nd ed.; Nardini: Florence, Italy, 2020. [Google Scholar]
- Cantisani, E.; Calandra, S.; Barone, S.; Caciagli, S.; Fedi, M.; Garzonio, C.A.; Liccioli, L.; Salvadori, B.; Salvatici, T.; Vettori, S. The mortars of Giotto’s Bell Tower (Florence, Italy): Raw materials and technologies. Constr. Build. Mater. 2021, 267, 120801. [Google Scholar] [CrossRef]
- Arizzi, A.; Cultrone, G. Mortars and plasters—How to characterise hydraulic mortars. Archaeol. Anthropol. Sci. 2021, 13, 1–22. Available online: https://link.springer.com/article/10.1007/s12520-021-01404-2 (accessed on 6 August 2021). [CrossRef]
- Cantisani, E.; Fratini, F.; Pecchioni, E. Optical and Electronic Microscope for Minero-Petrographic and Microchemical Studies of Lime Binders of Ancient Mortars. Minerals 2022, 12, 41. [Google Scholar] [CrossRef]
- Calandra, S.; Cantisani, E.; Vettori, S.; Ricci, M.; Agostini, B.; Garzonio, C.A. The San Giovanni Baptistery in Florence (Italy): Assessment of the State of Conservation of Surfaces and Characterization of Stone Materials. Appl. Sci. 2022, 12, 4050. [Google Scholar] [CrossRef]
- Bruni, S.; Cariati, F.; Fermo, P.; Cairati, P.; Alessandrini, G.; Toniolo, L. White lumps in fifth- to seventeenth-century A.D. mortars from Northern Italy. Archaeometry 1997, 39, 1–7. [Google Scholar] [CrossRef]
- Hughes, J.; Leslie, A.B.; Callebaut, K. The petrography of lime inclusions of historic lime based mortars. In Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials, Annales Geologiques des Pays Helleniques, Athens, Greece, 4–7 September 2001. [Google Scholar]
- Bakolas, A.; Biscontin, G.; Contardi, V.; Franceschi, E.; Moropoulou, A.; Palazzi, D.; Zendri, E. Thermoanalytical research on traditional mortars in Venice. Thermochim. Acta 1995, 269, 817–828. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Bakolas, A.; Moropoulou, A. Physico-chemical study of Cretan ancient mortars. Cem. Concr. Res. 2003, 33, 651–661. [Google Scholar] [CrossRef]
- UNI EN 1936. Natural Stone Test Methods—Determination of the Real and Apparent Density and of the Total and Open Porosity; Ente Nazionale Italiano di Normazione: Milano, Italy, 2007. [Google Scholar]
- UNI EN 15801. Conservation of Cultural Property—Test Methods—Determination of Water Absorption by Capillarity; Ente Nazionale Italiano di Normazione: Milano, Italy, 2010. [Google Scholar]
- Forster, A.M. How Hydraulic Lime Binders Work. Hydraulicity for Beginners and the Hydraulic Lime Family; Scottish Lime Center: Edinburgh, UK, 2004. [Google Scholar]
- Lezzerini, M.; Ramacciotti, M.; Cantini, F.; Fatighenti, B.; Antonelli, F.; Pecchioni, E.; Fratini, F.; Cantisani, E.; Giamello, M. Archaeometric study of natural hydraulic mortars: The case of the Late Roman Villa dell’Oratorio (Florence, Italy). Archaeol. Anthrop. Sci. 2017, 9, 603–615. [Google Scholar] [CrossRef]
- Jackson, M.D.; Moon, J.; Gotti, E.; Taylor, R.; Chae, S.R.; Kunz, M.; Emwas, A.H.; Meral, C.; Guttmann, P.; Levitz, P.; et al. Material and elastic properties of Al-tobermorite in ancient roman seawater concrete. J. Am. Ceram. Soc. 2013, 96, 2598–2606. [Google Scholar] [CrossRef]
- Jackson, M.D.; Mulcahy, S.R.; Chen, H.; Li, Y.; Li, Q.; Cappelletti, P.; Wenk, H.R. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am. Mineral. 2017, 102, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Collepardi, M. Ettringite formation and sulfate attack on concrete. J. Am. Concr. Inst. 2001, 200, 21–38. [Google Scholar]
- Cantisani, E.; Falabella, A.; Fratini, F.; Pecchioni, E.; Vettori, S.; Antonelli, F.; Giamello, M.; Lezzerini, M. Production of the Roman Cement in Italy: Characterization of a raw material used in Tuscany between 19th and 20th century and its comparison with a commercialized French stone material. Int. J. Archit. Herit. 2018, 12, 1038–1050. [Google Scholar] [CrossRef]
- Salvatici, T.; Calandra, S.; Centauro, I.; Pecchioni, E.; Intrieri, E.; Garzonio, C.A. Monitoring and Evaluation of Sandstone Decay Adopting Non-Destructive Techniques: On-Site Application on Building Stones. Heritage 2020, 3, 1287–1301. [Google Scholar] [CrossRef]
- Centauro, I.; Vitale, J.G.; Calandra, S.; Salvatici, T.; Natali, C.; Coppola, M.; Intrieri, E.; Garzonio, C.A. A Multidisciplinary Methodology for Technological Knowledge, Characterization and Diagnostics: Sandstone Facades in Florentine Architectural Heritage. Appl. Sci. 2022, 12, 4266. [Google Scholar] [CrossRef]
- Veiga, R.; Velosa, A.; Magalhaes, A. Experimental applications of mortars with pozzolanic additions: Characterization and performance evaluation. Constr. Build. Mater. 2009, 23, 318–327. [Google Scholar] [CrossRef]
- Boriani, M.; Bortolotto, S.; Giambruno, M.; Binda, L.; Tedeschi, C. The Naviglio Grande in Milan: A study to provide guidelines for conservation. Wit Trans. Built Environ. 2005, 83, 631–641. [Google Scholar]
Cores | Position * | Total Depth of Core Length (m) | Macroscopic Description | RQD (%) | |
---|---|---|---|---|---|
Lungarno degli Acciaiuoli | C1 | 5.10 m | 2.00 | Stone (to 0.20 m in depth) | 54 (fair) |
X (from 0.20 m to 1.84 m) | |||||
Stone (from 1.84 m to 2.00 m) | |||||
C2 | 3.70 m | 2.00 | X (to 2.00 m in depth) | 82 (good) | |
C2b | 5.40 m | 3.20 (inclination 44°) | Stone (to 0.20 m in depth) | 68 (fair) | |
X (from 0.20 to 1.60 m) | |||||
Y (from 1.60 to 3.20 m) | |||||
C3 | 4.46 m | 1.70 | Stone (to 0.20 m in depth) | 68 (fair) | |
X (from 0.20 m to 1.70 m) | |||||
C4 | 4.53 m | 1.10 | Stone (to 0.20 m in depth) | 54 (fair) | |
Z (from 0.20 m to 0.50 m) | |||||
W (from 0.50 to 1.10 m) | |||||
C5 | 3.37 m | 1.80 | Stone (to 0.20 m in depth) | 68 (fair) | |
Z (from 0.20 m to 0.50 m) | |||||
W (from 0.50 to 1.70 m) | |||||
Stone (from 1.70 m to 1.80 m) | |||||
C6 | 5.00 m | 2.00 | Stone (to 0.20 m in depth) | 83 (good) | |
Y (from 0.20 m to 2.00 m) | |||||
Lungarno delle Grazie | C7 | 2.65 m | 1.80 | Stone (to 0.25 m in depth) | 41 (poor) |
X (from 0.25 m to 0.80 m) | |||||
Y (from 0.80 to 1.80 m) | |||||
C8 | 7.00 m | 2.00 | Bricks (to 0.40 m in depth) | 69 (fair) | |
X (from 0.40 m to 2.00 m) | |||||
C9 | 7.20 m | 2.00 | X (to 1.15 m in depth) | 95 (very good) | |
Y (from 1.15 to 2.00 m) | |||||
C10 | 2.65 m | 1.50 | Stone (to 0.20 m in depth) | 39 (poor) | |
X (from 0.20 m to 0.50 m) | |||||
Y (from 0.50 to 1.50) | |||||
C11 | 5.85 m | 2.00 | Stone (to 0.15 m in depth) | 51 (fair) | |
X (from 0.15 m to 0.85 m) | |||||
Y (from 0.85 to 2.00) | |||||
C12 | 6.00 m | 2.00 | Stone (to 0.20 m in depth) | 65 (fair) | |
X (from 0.20 m to 0.80 m) | |||||
Y (from 0.80 m to 2.00 m) | |||||
C13 | 5.60 m | 2.00 | Stone (to 0.20 m in depth) | 86 (good) | |
X (from 0.20 m to 0.80 m) | |||||
Y (from 0.80 m to 2.00 m) |
Cores | Testing Method | Specimens Number for Test [n°] | Cores | Testing Methods | Specimens Number for Test [n°] | ||
---|---|---|---|---|---|---|---|
Lungarno degli Acciaiuoli | C1 | OM/XRD/TGA/FTIR | - | Lungarno alle Grazie | C7 | OM/XRD/TGA/FTIR | 2 (X), 2 (Y) |
Pw/IC/ρ | 5 (X) | Pw/IC/ρ | 5 (X), 5 (Y) | ||||
Aw | 3 (X) | Aw | 3 (X), 3 (Y) | ||||
UV/UC | 2 (X) | UV/UC | 2 (X), 2 (Y) | ||||
C2 | OM/XRD/TGA/FTIR | 2 (X) | C8 | OM/XRD/TGA/FTIR | - | ||
Pw/IC/ρ | 5 (X) | Pw/IC/ρ | 5 (X) | ||||
Aw | 3 (X) | Aw | 3 (X) | ||||
UV/UC | 2 (X) | UV/UC | 2 (X) | ||||
C2b | OM/XRD/TGA/FTIR | 2 (Y) | C9 | OM/XRD/TGA/FTIR | - | ||
Pw/IC/ρ | 5 (X), 5 (Y) | Pw/IC/ρ | 5 (Y) | ||||
Aw | 3 (X), 3 (Y) | Aw | 3 (Y) | ||||
UV/UC | 2 (X), 2 (Y) | UV/UC | 2 (Y) | ||||
C3 | OM/XRD/TGA/FTIR | 2 (X) | C10 | OM/XRD/TGA/FTIR | 2 (X), 4 (Y) | ||
Pw/IC/ρ | 5 (X) | Pw/IC/ρ | 5 (X) | ||||
Aw | 3 (X) | Aw | 3 (X) | ||||
UV/UC | 2 (X) | UV/UC | - | ||||
C4 | OM/XRD/TGA/FTIR | - | C11 | OM/XRD/TGA/FTIR | 2 (X) | ||
Pw/IC/ρ | 5 (W) | Pw/IC/ρ | 5 (X), 5 (Y) | ||||
Aw | 3 (W) | Aw | 3 (X), 3 (Y) | ||||
UV/UC | 2 (W) | UV/UC | 2 (X), 2 (Y) | ||||
C5 | OM/XRD/FTIR | 2 (Z), 2 (W) | C12 | OM/XRD/TGA/FTIR | - | ||
Pw/IC/ρ | 5 (Z), 5 (W) | Pw/IC/ρ | 5 (Y) | ||||
Aw | 3 (Z), 3 (W) | Aw | 3 (Y) | ||||
UV/UC | 2 (Z), 2 (W) | UV/UC | 2 (Y) | ||||
C6 | OM/XRD/TGA/FTIR | 2 (Y) | C13 | OM/XRD/TGA/FTIR | 2 (X) | ||
Pw/IC/ρ | 5 (Y) | Pw/IC/ρ | 5 (X), 5 (Y) | ||||
Aw | 3 (Y) | Aw | 3 (X), 3 (Y) | ||||
UV/UC | 2 (Y) | UV/UC | 2 (X), 2 (Y) |
Samples | σ [Mpa] | Vp [m/s] | Aggregate [%] | Void [%] | Mortar [%] | |
---|---|---|---|---|---|---|
Lungarno degli Acciaiuoli | C1-X | 19 | 2740 | 51 | 5 | 45 |
C2b-X | 33 | 3512 | 68 | 3 | 29 | |
C2b-Y | 19 | 3265 | 56 | 3 | 41 | |
C2-X | 31 | 3433 | 60 | 0 | 40 | |
C3-X | 15 | 2420 | 50 | 4 | 46 | |
C4-Z | 35 | 3356 | - | - | - | |
C5-Z | 40 | 3402 | - | - | - | |
C5-W | 37 | 3398 | - | - | - | |
C6-Y | 39 | 3426 | 60 | 1 | 39 | |
Lungarno delle Grazie | C7-X | 20 | 3071 | 63 | 0 | 37 |
C7-Y | 24 | 2796 | 39 | 1 | 61 | |
C8-X | 29 | 2990 | 58 | 2 | 41 | |
C9-Y | 16 | 3232 | 46 | 0 | 54 | |
C11-X | 25 | 3000 | 38 | 0 | 62 | |
C11-Y | 17 | 2572 | 14 | 3 | 86 | |
C12-Y | 13 | 3113 | 45 | 1 | 55 | |
C13-X | 20 | 2918 | 34 | 1 | 65 | |
C13-Y | 10 | 2876 | 25 | 0 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calandra, S.; Salvatici, T.; Centauro, I.; Cantisani, E.; Garzonio, C.A. The Mortars of Florence Riverbanks: Raw Materials and Technologies of Lungarni Historical Masonry. Appl. Sci. 2022, 12, 5200. https://doi.org/10.3390/app12105200
Calandra S, Salvatici T, Centauro I, Cantisani E, Garzonio CA. The Mortars of Florence Riverbanks: Raw Materials and Technologies of Lungarni Historical Masonry. Applied Sciences. 2022; 12(10):5200. https://doi.org/10.3390/app12105200
Chicago/Turabian StyleCalandra, Sara, Teresa Salvatici, Irene Centauro, Emma Cantisani, and Carlo Alberto Garzonio. 2022. "The Mortars of Florence Riverbanks: Raw Materials and Technologies of Lungarni Historical Masonry" Applied Sciences 12, no. 10: 5200. https://doi.org/10.3390/app12105200
APA StyleCalandra, S., Salvatici, T., Centauro, I., Cantisani, E., & Garzonio, C. A. (2022). The Mortars of Florence Riverbanks: Raw Materials and Technologies of Lungarni Historical Masonry. Applied Sciences, 12(10), 5200. https://doi.org/10.3390/app12105200