A Reflection-Type Dual-Band Phase Shifter with an Independently Tunable Phase
Abstract
:1. Introduction
2. Design Method of Proposed Dual-Band Phase Shifter
2.1. Parasitic Susceptance Compensation
2.1.1. Susceptance Compensation at Low-Band Operation
2.1.2. Susceptance Compensation at High-Band Operation
2.2. Analysis of Phase Shifting Range
2.2.1. Phase Shifting Range at Low-Band Operation
2.2.2. Phase Shifting Range at High-Band Operation
3. Simulation and Measurement Results
3.1. Results of Low-Band Operation
3.2. Results of High-Band Operation
3.3. Simultaneous Dual-Band Operating Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Luis, J.R.; De Flaviis, F. A reconfigurable dual frequency switched beam antenna array and phase shifter using PIN diodes. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, North Charleston, SC, USA, 1–5 June 2009. [Google Scholar]
- Wang, W.; Chen, C.; Wang, S.; Wu, W. Switchable dual-band dual-sense circularly polarized patch antenna implemented by dual-band phase shifter of +/−90°. IEEE Trans. Antennas Propag. 2021, 69, 6912–6917. [Google Scholar] [CrossRef]
- Shiroma, G.S.; Miyamoto, R.Y.; Shiroma, W.A. A full-duplex dual-frequency self-steering array using phase detection and phase shifting. IEEE Trans. Microw. Theory Tech. 2006, 54, 128–134. [Google Scholar] [CrossRef]
- Sobhy, E.A.; Hoyos, S. A multiphase multipath technique with digital phase shifters for harmonic distortion cancellation. IEEE Trans. Circuits Syst. II Exp. Briefs. 2010, 57, 921–925. [Google Scholar] [CrossRef]
- Szortyka, V.; Raczkowski, K.; Kuijk, M.; Wambacq, P. A wideband beamforming lowpass filter for 60 GHz phased-array receivers. IEEE Trans. Circuits Syst. I Reg. Pap. 2015, 62, 2324–2333. [Google Scholar] [CrossRef]
- Yang, X.; Lin, J. A digitally controlled constant envelop phase-shift modulator for low-power broadband wireless applications. IEEE Trans. Microw. Theory Tech. 2006, 54, 96–105. [Google Scholar] [CrossRef]
- Gatti, R.V.; Ocera, A.; Marcaccioli, L.; Sorrentino, R. A dual band reconfigurable power divider for WLAN applications. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006. [Google Scholar]
- Öjefors, E.; Cheng, S.; From, K.; Skarin, I.; Hallbjörner, P.; Rydberg, A. Electrically steerable single-layer microstrip traveling wave antenna with varactor diode-based phase shifters. IEEE Trans. Antennas Propag. 2007, 55, 2451–2460. [Google Scholar] [CrossRef]
- LaRocca, T.; Tam, S.W.; Hyang, D.; Gu, Q.; Socher, E.; Hant, W.; Chang, F. Millimeter-wave CMOS digital controlled artificial dielectric transmission lines for reconfigurable ICs. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008. [Google Scholar]
- Woods, W.H.; Valdes-Garcia, A.; Ding, H.; Rascoe, J. CMOS millimeter wave phase shifter based on tunable transmission lines. In Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 22–25 September 2013. [Google Scholar]
- Upshur, J.I.; Geller, B.D. Low-loss 360° X-band analog phase shifter. In Proceedings of the IEEE International Digest on Microwave Symposium, Dallas, TX, USA, 8–10 May 1990. [Google Scholar]
- Liew, Y.H.; Joe, J.; Leong, M.S. A novel 360 analog phase shifter with linear voltage phase relationship. In Proceedings of the IEEE Asia–Pacific Microwave Conference, Singapore, 30 November–3 December 1999. [Google Scholar]
- Burdin, F.; Iskandar, Z.; Podevin, F.; Ferrari, P. Design of compact reflection-type phase shifters with high figure-of-merit. IEEE Trans. Microw. Theory Tech. 2015, 63, 1883–1893. [Google Scholar] [CrossRef]
- Lin, C.S.; Chang, S.F.; Chang, C.C.; Shu, Y.H. Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss. IEEE Trans. Microw. Theory Tech. 2007, 55, 1862–1868. [Google Scholar] [CrossRef]
- Lin, C.S.; Chang, S.F.; Hsiao, W.C. A full 360° RTPS with constant insertion loss. IEEE Microw. Compon. Lett. 2008, 18, 106–108. [Google Scholar]
- Liu, W.J.; Zheng, S.Y.; Pan, Y.M.; Li, Y.X.; Long, Y.L. A wideband tunable reflection-type phase shifter with wide relative phase shift. IEEE Trans. Circuit Syst. II Exp. Briefs 2017, 64, 1442–1446. [Google Scholar] [CrossRef]
- Venter, J.J.P.; Stander, T.; Ferrari, P. X-band reflection-type phase shifters using coupled-line couplers on single-layer RF PCB. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 807–809. [Google Scholar] [CrossRef] [Green Version]
- Abbosh, M. Compact tunable reflection phase shifters using short section of coupled lines. IEEE Trans. Microw. Theory Tech. 2012, 60, 2465–2472. [Google Scholar] [CrossRef]
- An, B.; Chaudhary, G.; Jeong, Y. Wideband tunable phase shifter with low in-band phase deviation using coupled line. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 678–680. [Google Scholar] [CrossRef]
- Singh, A.; Mandal, M.K. Electronically tunable reflection type phase shifters. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 425–429. [Google Scholar] [CrossRef]
- Dong, Q.; Wu, Y.; Chen, W.; Yang, Y.; Wang, W. Single-Layer Dual-Band Bandwidth-Enhanced Filtering Phase Shifter With Tweo Different Predetermined Phase-Shifting Values. IEEE Trans. Circuits Syst. II Exp. Briefs 2021, 68, 236–240. [Google Scholar] [CrossRef]
- Itoh, Y.; Takagi, H. A dual-band 90-degree SiGe HBT active phase shifter using band-pass and band-stop designs. In Proceedings of the European Microwave Conference (EuMC), Nuremberg, Germany, 10–12 October 2017. [Google Scholar]
- Banbury, D.R.; Fayyaz, N.; Safavi-Naeini, S.; Nikneshan, S. A CMOS 5.5/2.4 GHz dual-band smart-antenna transceiver with a novel RF dual-band phase shifter for WLAN 802.11a/b/g. In Proceedings of the IEE Radio Frequency Integrated Circuits (RFIC) Systems, Digest of Papers, Forth Worth, TX, USA, 6–8 June 2004. [Google Scholar]
- Lu, C.; Pham, A.-V.H.; Livezey, D. Development of multiband phase shifters in 180-nm RF CMOS technology with active loss compensation. IEEE Trans. Microw. Theory Tech. 2006, 54, 40–45. [Google Scholar]
- Xiong, Y.; Zeng, X.; Li, J. A tunable concurrent dual-band phase shifter MMIC for beam steering applications. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 2412–2416. [Google Scholar] [CrossRef]
ZHo [Ω] | ZHs [Ω] | PSR [°] (fL/fH) | PD [°] (fL/fH) |
---|---|---|---|
30 | 120 | 56.3/0 | ±1.19/±3.04 |
40 | 84.21/0 | ±4.69/±2.15 | |
50 | 107.74/0 | ±10.69/±1.4 | |
60 | 124.9/0 | ±18.45/±0.98 | |
70 | 136.31/0 | ±27.22/±0.72 | |
50 | 100 | 107.74/0 | ±13.07/±0.92 |
110 | 107.74/0 | ±11.77/±1.14 | |
120 | 107.74/0 | ±10.69/±1.4 | |
130 | 107.74/0 | ±9.76/±1.69 | |
140 | 107.74/0 | ±8.97/±2.01 |
ZLo [Ω] | ZLs [Ω] | PSR [°] (fL/fH) | PD [°] (fL/fH) |
---|---|---|---|
30 | 120 | 0/141.08 | 4.11/4.93 |
40 | 0/135.7 | 2.55/4.55 | |
50 | 0/121.82 | 1.68/9.30 | |
60 | 0/106.67 | 1.18/12.75 | |
70 | 0/92.58 | 0.87/14.58 | |
50 | 100 | 0/121.82 | 1.11/11.36 |
110 | 0/121.82 | 1.38/10.24 | |
120 | 0/121.82 | 1.68/9.30 | |
130 | 0/121.82 | 2.02/8.51 | |
140 | 0/121.82 | 2.39/7.83 |
W1 = W2 = W5 = 2.4 mm | W3 = W4 = 0.5 mm | L1 = 22 mm |
L2 = 29 mm | L3 = 23 mm | L4 = 30 mm |
L5 = 13.6 mm | Lc = 5R4||5R4 (Part no.)/3.82 pF (@ fH) | Cc = 0R8 (Part no.)/1 pF (@ fL) |
DC block capacitor: 120 J | RF choke inductor: 3R9 | Bypass capacitor: 8R2 |
56.6 pF (@ fL)/216 pH (@ fH) | 76.02 nH (@ fL)/223.8 nH (@ fH) | 12 pF (@ fL)/29.01 pF (@ fH) |
Bias Voltage [V] (fL/fH) | PSR [°] @ fL | Phase [°] @ fH | PD [°] (fL/fH) | Max. IL [dB] (fL/fH) | Min. RL [dB] (fL/fH) |
---|---|---|---|---|---|
0 to 16/2.5 | 114.067 | 60 | ±8.396/±0.342 | 1.580/1.989 | 19.669/21.077 |
0 to 16/16 | 114.494 | 114 | ±9.465/±0.667 | 1.414/1.419 | 19.695/25.047 |
Bias Voltage [V] (fL/fH) | Phase [°] @ fL | PSR [°] @ fH | PD [°] (fL/fH) | Max. IL [dB] (fL/fH) | Min. RL [dB] (fL/fH) |
---|---|---|---|---|---|
2/0 to 16 | 60 | 113.947 | ±1.035/±5.555 | 1.485/1.851 | 20.670/16.710 |
16/0 to 16 | 114 | 114.242 | ±0.168/±5.897 | 1.514/1.735 | 19.662/16.724 |
References | Freq. [GHz] | BW [GHz] | Number of Varactors | IL [dB] | RL [dB] | PSR [°] | PD [°] | Dual-Band | Size [mm × mm] |
---|---|---|---|---|---|---|---|---|---|
[13] | 2 | 0.2 | 6 | <1.56 | >13.4 | 385 | NA | X | 81 × 117 |
[14] | 2 | 0.2 | 2 | <4.6 | >12 | 234 | NA | X | 49 × 51 |
[15] | 2 | 0.2 | 4 | <4.6 | >14 | 407 | NA | X | 69 × 51 |
[16] | 1.5 | 1 | 4 | <5.8 | >14 | 350 | ±100 | X | 52 × 32 |
[17] | 10 | 2 | 4 | <3.4 | >10 | 392 | NA | X | NA |
[18] | 2.2 | 0.8 | 2 | <3.2 | >10 | 360 | ±15 | X | 19.4 × 17 |
[19] | 2.5 | 0.5 | 4 | <1.28 | >15.76 | 146.9 | ±5.79 | X | NA |
[20] | 10 | 2 | 2 | <2.3 | >10 | 190 | ±10 | X | NA |
[24] | 3.5 | 0.02 | NA | <3.7 | >10 | 360 | ±3 | Yes | 2.3 × 1.2 (IBM 180-nM RF CMOS) |
5.8 | 0.02 | <4.5 | >10 | 360 | ±3 | ||||
[25] | 5.9 | 0.2 | 12 | <2.8 | >10 | 106 | NA/±7 | Yes (independently) | 0.92 × 1.06 (0.25 um GaAs process) |
16 | 0.4 | <3.5 | >10 | 108 | ±2/NA | ||||
This work | 1.88 | 0.1 | 4 | <1.867 | >19.695 | 114.1 | ±8.43 | Yes (independently) | 85 × 52 |
2.44 | 0.1 | <1.897 | >16.833 | 114.0 | ±5.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Jeong, J.; Chaudhary, G.; Jeong, Y. A Reflection-Type Dual-Band Phase Shifter with an Independently Tunable Phase. Appl. Sci. 2022, 12, 492. https://doi.org/10.3390/app12010492
Kim S, Jeong J, Chaudhary G, Jeong Y. A Reflection-Type Dual-Band Phase Shifter with an Independently Tunable Phase. Applied Sciences. 2022; 12(1):492. https://doi.org/10.3390/app12010492
Chicago/Turabian StyleKim, Suyeon, Junhyung Jeong, Girdhari Chaudhary, and Yongchae Jeong. 2022. "A Reflection-Type Dual-Band Phase Shifter with an Independently Tunable Phase" Applied Sciences 12, no. 1: 492. https://doi.org/10.3390/app12010492
APA StyleKim, S., Jeong, J., Chaudhary, G., & Jeong, Y. (2022). A Reflection-Type Dual-Band Phase Shifter with an Independently Tunable Phase. Applied Sciences, 12(1), 492. https://doi.org/10.3390/app12010492