Novel Techniques for Microbiological Safety in Meat and Fish Industries
Abstract
:1. Introduction
2. Factors Affecting Microbial Spoilage of Meat, Fish and Derived Products
2.1. Food Structure
2.2. Composition of Meat, Fish and Derived Products
2.3. Water Activity
2.4. pH
2.5. Temperature
2.6. Atmosphere Conditions
2.7. Interaction Phenomena
3. Microbial Safety of Meat and Meat Products
3.1. Spoilage Micro-Organisms of Meat
3.2. Pathogens in Meat
3.2.1. Listeria Monocytogenes
3.2.2. Salmonella Enterica
3.2.3. Staphylococcus Aureus
3.2.4. Clostridium Perfringens
3.2.5. Bacillus Cereus
4. Non-Conventional Techniques of Meat Preservation
Thermal Preservation Technique
5. Novel Thermal Practices
5.1. Ohmic Heating
5.1.1. Basic Principle of Ohmic Heating
Fundamentals of Electrical Circuitry
Mechanism of Ohmic Heating
Ohmic Heating in Meat Products
5.2. Radio Frequency (RF)
5.2.1. Heating Mechanism of Radio-Frequency
5.2.2. Application of Radio Frequency in Meat Products
6. Non-Thermal Preservation Techniques
6.1. Cold Plasma
6.2. Ultrasound
6.3. Pulsed Electric Field
6.4. Irradiation
6.5. Pulsed Light
6.6. High Pressure Processing
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FSO | Food Safety Objectives |
HACCP | Hazard Analysis and Critical Control Point |
GDP | Gross Domestic Product |
S. aureus | Staphylococcus aureus |
RTE | Ready To Eat |
HPP | High Pressure Processing |
RF | Radio Frequency |
PEF | Pulse Electric Field |
CB | Conventional Beef |
WB | Wagyu Beef |
OH | Ohmic Heating |
EC | Eddy Current |
DC | Direct Current |
MW | Microwave |
FCC | Federal Communication Commission |
CP | Cold Plasma |
ROS | Reactive Oxygen Species |
DBD | Dielectric Barrier Discharge |
US | Ultrasound |
WHC | Water Holding Capacity |
PEF | Pulsed Electric Field |
UV | Ultraviolet |
PL | Pulsed Light |
References
- Troy, D.J.; Ojha, K.S.; Kerry, J.P.; Tiwari, B.K. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview. Meat. Sci. 2016, 120, 2–9. [Google Scholar] [CrossRef] [PubMed]
- FAO. Technical Guidance Principles of Risk-Based Meat Inspection and Their Application. 2019. Available online: http://www.fao.org/3/ca5465en/CA5465EN.pdf (accessed on 10 November 2020).
- Di Renzo, L.; Colica, C.; Carraro, A.; Goga, B.C.; Marsella, L.T.; Botta, R.; Colombo, M.L.; Gratteri, S.; Chang, T.F.M.; Droli, M.; et al. Food safety and nutritional quality for the prevention of non communicable diseases: The Nutrient, hazard Analysis and Critical Control Point process (NACCP). J. Transl. Med. 2015, 13, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Surveillance for Foodborne Disease Outbreaks, United States, 2017, Annual Report; Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2017. [Google Scholar]
- Omer, M.K.; Alvarez-Ordonez, A.; Prieto, M.; Skjerve, E.; Asehun, T.; Alvseike, O.A. A systematic review of bacterial foodborne outbreaks related to red meat and meat products. Foodborne Pathog. Dis. 2018, 15, 598–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.-M.; De Alba, M.; Sun, D.-W.; Tiwari, B. Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Microbial spoilage of foods: Fundamentals. In The Microbiological Quality of Food; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–21. [Google Scholar] [CrossRef]
- Fleet, G.H. Chapter 5—Yeast Spoilage of Foods and Beverages. In The Yeasts, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; pp. 53–63. [Google Scholar] [CrossRef]
- Davidson, P.M.; Critzer, F.M. Interventions to Inhibit or Inactivate Bacterial Pathogens in Foods. In Microbial Food Safety; Springer: New York, NY, USA, 2011; pp. 189–202. [Google Scholar] [CrossRef]
- Bennani, L.; Faid, M.; Bouseta, A. Experimental manufacturing of kaddid, a salted dried meat product: Control of the microorganisms. Eur. Food Res. Technol. 2000, 211, 153–157. [Google Scholar] [CrossRef]
- Domowe, W. Safety Hurdles. 2010. Available online: http://www.wedlinydomowe.com/fermentedsausages/fermented-sausages-safety-hurdles.htm. (accessed on 11 November 2020).
- USDA. FSRE (Food Safety Regulatory Essentials) Shelf-Stable, Principles of Preservation of Shelf-Stable Dried Meat Products. 2005; pp. 156–170. Available online: http://www.fsis.usda.gov/PDF/FSRE_SS_7Principles.pdf. (accessed on 11 November 2020).
- Cerveny, J.; Meyer, J.D.; Hall, P.A. Microbiological spoilage of meat and poultry products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: New York, NY, USA, 2009; pp. 69–86. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Mutwakil; Dave, D.; Ghaly, A.E. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar] [CrossRef] [Green Version]
- Luong, N.-D.M.; Coroller, L.; Zagorec, M.; Membré, J.-M.; Guillou, S. Spoilage of Chilled Fresh Meat Products during Storage: A Quantitative Analysis of Literature Data. Microorganisms 2020, 8, 1198. [Google Scholar] [CrossRef]
- Ripolles-Avila, C.; García-Hernández, N.; Cervantes-Huamán, B.H.; Mazaheri, T.; Rodríguez-Jerez, J.J. Quantitative and Compositional Study of Monospecies Biofilms of Spoilage Microorganisms in the Meat Industry and Their Interaction in the Development of Multispecies Biofilms. Microorganisms 2019, 7, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Guo, Y.-Z.; Li, Y.-F. Interactions of microorganisms during natural spoilage of pork at 5 °C. J. Food Eng. 2006, 72, 24–29. [Google Scholar] [CrossRef]
- Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 2000, 55, 181–186. [Google Scholar] [CrossRef]
- Sohaib, M.; Anjum, F.M.; Arshad, M.S.; Rahman, U.U. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. J. Food Sci. Technol. 2015, 53, 19–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofos, J.N. Meat and Meat Products. In Food Safety Management; Academic Press: Cambridge, MA, USA, 2014; pp. 119–162. [Google Scholar] [CrossRef]
- Sofos, J.N. Challenges to meat safety in the 21st century. Meat Sci. 2008, 78, 3–13. [Google Scholar] [CrossRef]
- Cavus, S.; Tornuk, F.; Sarioglu, K.; Yetim, H. Determination of mold contamination and aflatoxin levels of the meat products/ingredients collected from Turkey market. J. Food Saf. 2018, 38, e12494. [Google Scholar] [CrossRef]
- Shirai, H.; Datta, A.K.; Oshita, S. Penetration of aerobic bacteria into meat: A mechanistic understanding. J. Food Eng. 2017, 196, 193–207. [Google Scholar] [CrossRef]
- Madoroba, E.; Magwedere, K.; Chaora, N.; Matle, I.; Muchadeyi, F.; Mathole, M.; Pierneef, R. Microbial Communities of Meat and Meat Products: An Exploratory Analysis of the Product Quality and Safety at Selected Enterprises in South Africa. Microorganisms 2021, 9, 507. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shimamoto, T. Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157:H7 and Shigella spp. from meat and dairy products in Egypt. Int. J. Food Microbiol. 2014, 168–169, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Abd-ElGhany, S.M.; Elhadidy, M.; Tamura, T. Molecular Characterization and Antimicrobial Resistance Profile of Methicillin-Resistant Staphylococcus aureus in Retail Chicken. J. Food Prot. 2015, 78, 1879–1884. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y.; et al. Staphylococcus aureus Isolated From Retail Meat and Meat Products in China: Incidence, Antibiotic Resistance and Genetic Diversity. Front. Microbiol. 2018, 9, 2767. [Google Scholar] [CrossRef]
- Li, M.; Huang, L.; Zhu, Y.; Wei, Q. Growth of Clostridium perfringens in roasted chicken and braised beef during cooling–One-step dynamic analysis and modeling. Food Control. 2019, 106, 106739. [Google Scholar] [CrossRef]
- Shaltout, F.A.; Zakaria, I.M.; Nabil, M.E. Detection and typing of Clostridium perfringens in some retail chicken meat products. Benha Veter-Med. J. 2017, 33, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Pfrunder, S.; Grossmann, J.; Hunziker, P.; Brunisholz, R.; Gekenidis, M.-T.; Drissner, D. Bacillus cereus Group-Type Strain-Specific Diagnostic Peptides. J. Proteome Res. 2016, 15, 3098–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Yu, S.; Yuan, X.; Li, C.; Yu, P.; Wang, J.; Guo, H.; Wu, S.; Ye, Q.; Lei, T.; et al. An Investigation on the Occurrence and Molecular Characterization of Bacillus cereus in Meat and Meat Products in China. Foodborne Pathog. Dis. 2021, 18, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Rahman, U.U.; Sahar, A.; Ishaq, A.; Aadil, R.M.; Zahoor, T.; Ahmad, M.H. Advanced meat preservation methods: A mini review. J. Food Saf. 2018, 38, e12467. [Google Scholar] [CrossRef]
- Xiong, Y.L. The Storage and Preservation of Meat. In Lawrie’s Meat Science; Woodhead publishing: Sawston, UK, 2017; pp. 205–230. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, A.K. Ohmic Heating: Concept and Applications—A Review. Crit. Rev. Food Sci. Nutr. 2015, 56, 2338–2351. [Google Scholar] [CrossRef] [PubMed]
- Indiarto, R.; Rezaharsamto, B. A review on ohmic heating and its use in food. Int. J. Sci. Technol. Res. 2020, 9, 485–490. [Google Scholar]
- Goullieux, A.; Pain, J.-P.; Goullieux, A.; Pain, J.-P. Ohmic Heating. In Emerging Technologies for Food Processing; Academic Press: Cambridge, MA, USA, 2014; pp. 399–426. [Google Scholar] [CrossRef]
- Gavahian, M.; Tiwari, B.K.; Chu, Y.-H.; Ting, Y.-W.; Farahnaky, A. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends Food Sci. Technol. 2019, 86, 328–339. [Google Scholar] [CrossRef]
- Llave, Y.; Udo, T.; Fukuoka, M.; Sakai, N. Ohmic heating of beef at 20 kHz and analysis of electrical conductivity at low and high frequencies. J. Food Eng. 2018, 228, 91–101. [Google Scholar] [CrossRef]
- Engchuan, W.; Jittanit, W.; Garnjanagoonchorn, W. The ohmic heating of meat ball: Modeling and quality determination. Innov. Food Sci. Emerg. Technol. 2014, 23, 121–130. [Google Scholar] [CrossRef]
- Chen, J.H.; Ren, Y.; Seow, J.; Liu, T.; Bang, W.S.; Yuk, H.G. Intervention Technologies for Ensuring Microbiological Safety of Meat: Current and Future Trends. Compr. Rev. Food Sci. Food Saf. 2012, 11, 119–132. [Google Scholar] [CrossRef]
- Liu, W.; Lanier, T.C. Rapid (microwave) heating rate effects on texture, fat/water holding, and microstructure of cooked comminuted meat batters. Food Res. Int. 2016, 81, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Di Rosa, A.R.; Bressan, F.; Leone, F.; Falqui, L.; Chiofalo, V. Radio frequency heating on food of animal origin: A review. Eur. Food Res. Technol. 2019, 245, 1787–1797. [Google Scholar] [CrossRef]
- Jiao, Y.; Tang, J.; Wang, Y.; Koral, T.L. Radio-Frequency Applications for Food Processing and Safety. Annu. Rev. Food Sci. Technol. 2018, 9, 105–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, J.C. The Chemistry of Cold Plasma. In Cold Plasma in Food and Agriculture; Academic Press: Cambridge, MA, USA, 2016; pp. 53–81. [Google Scholar] [CrossRef]
- Varilla, C.; Marcone, M.; Annor, G.A. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Lee, H.J.; Jung, H.; Choe, W.; Ham, J.S.; Lee, J.H.; Jo, C. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol. 2011, 28, 1468–1471. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef]
- Lee, H.; Yong, H.I.; Kim, H.-J.; Choe, W.; Yoo, S.J.; Jang, E.J.; Jo, C. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 2016, 25, 1189–1195. [Google Scholar] [CrossRef]
- Rossow, M.; Ludewig, M.; Braun, P.G. Effect of cold atmospheric pressure plasma treatment on inactivation of Campylobacter jejuni on chicken skin and breast fillet. LWT 2018, 91, 265–270. [Google Scholar] [CrossRef]
- Chaplot, S.; Yadav, B.; Jeon, B.; Roopesh, M.S. Atmospheric Cold Plasma and Peracetic Acid–Based Hurdle Intervention To Reduce Salmonella on Raw Poultry Meat. J. Food Prot. 2019, 82, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.H.; Oh, Y.J.; Lee, S.Y.; Kang, J.H.; Min, S.C. Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT 2020, 127, 109429. [Google Scholar] [CrossRef]
- Zhuang, H.; Rothrock, M.J., Jr.; Hiett, K.L.; Lawrence, K.C.; Gamble, G.R.; Bowker, B.C.; Keener, K.M. In-package air cold plasma treatment of chicken breast meat: Treatment time effect. J. Food Qual. 2019, 28, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Aaslyng, M.D.; Meinert, L. Meat flavour in pork and beef–From animal to meal. Meat Sci. 2017, 132, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilphy, A.R.S.; Verma, D.K.; Kareem, A. Principles of Ultrasonic Technology for Treatment of Milk and Milk Products. In Food Process Engineering; Apple Academic Press: Palm Bay, FL, USA, 2016; pp. 211–236. [Google Scholar]
- Al-Hilphy, A.R.; Al-Temimi, A.B.; Al Rubaiy, H.H.M.; Anand, U.; Delgado-Pando, G.; Lakhssassi, N. Ultrasound applications in poultry meat processing: A systematic review. J. Food Sci. 2020, 85, 1386–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Alarcon-Rojo, A.; Janacua, H.; Rodriguez, J.; Paniwnyk, L.; Mason, T. Power ultrasound in meat processing. Meat Sci. 2015, 107, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, C.; Lyng, J.; Allen, P. The use of power ultrasound for accelerating the curing of pork. Meat Sci. 2014, 98, 142–149. [Google Scholar] [CrossRef]
- Gómez-Salazar, J.A.; Ochoa-Montes, D.A.; Ceron-Garcia, A.; Ozuna, C.; Sosa-Morales, M.E. Effect of Acid Marination Assisted by Power Ultrasound on the Quality of Rabbit Meat. J. Food Qual. 2018, 2018, 5754930. [Google Scholar] [CrossRef]
- Piñon, M.; Alarcon-Rojo, A.; Renteria, A.; Carrillo-López, L.M. Microbiological properties of poultry breast meat treated with high-intensity ultrasound. Ultrasonics 2020, 102, 105680. [Google Scholar] [CrossRef] [PubMed]
- Mok, J.H.; Her, J.-Y.; Kang, T.; Hoptowit, R.; Jun, S. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) combination technology on the extension of supercooling for chicken breasts. J. Food Eng. 2017, 196, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Boateng, E.F.; Nasiru, M.M. Applications of Ultrasound in Meat Processing Technology: A Review. Food Sci. Technol. 2019, 7, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Režek, I.; Herceg, Z.; Grbavac, J. Possibilities of applying high power ultrasound in meat industry. Comput. Sci. 2014, 16, 356–361. [Google Scholar]
- Kang, D.; Zhang, W.; Lorenzo, J.M.; Chen, X. Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. Crit. Rev. Food Sci. Nutr. 2020, 61, 1914–1933. [Google Scholar] [CrossRef] [PubMed]
- Gómez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Martí-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomašević, I.; Lorenzo, J.M. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Chu, Y.-H.; Sastry, S. Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1040–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puértolas, E.; Koubaa, M.; Barba, F.J. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Res. Int. 2016, 80, 19–26. [Google Scholar] [CrossRef]
- Barba, F.J.; Ahrné, L.; Xanthakis, E.; Landerslev, M.G.; Orlien, V. Innovative Technologies for Food Preservation. In Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms; Academic Press: Cambridge, MA, USA, 2018; pp. 25–51. [Google Scholar] [CrossRef]
- Puértolas, E.; Barba, F.J. Electrotechnologies applied to valorization of by-products from food industry: Main findings, energy and economic cost of their industrialization. Food Bioprod. Process. 2016, 100, 172–184. [Google Scholar] [CrossRef]
- Khan, A.A.; Randhawa, M.A.; Carne, A.; Ahmed, I.A.M.; Barr, D.; Reid, M.; Bekhit, A.E.-D. Effect of low and high pulsed electric field on the quality and nutritional minerals in cold boned beef M. longissimus et lumborum. Innov. Food Sci. Emerg. Technol. 2017, 41, 135–143. [Google Scholar] [CrossRef]
- Ma, Q.; Hamid, N.; Oey, I.; Kantono, K.; Faridnia, F.; Yoo, M.; Farouk, M. Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innov. Food Sci. Emerg. Technol. 2016, 37, 359–374. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Current and future prospects for the use of pulsed electric field in the meat industry. Crit. Rev. Food Sci. Nutr. 2018, 59, 1660–1674. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.-D.A.; Suwandy, V.; Carne, A.; van de Ven, R.; Hopkins, D. Effect of repeated pulsed electric field treatment on the quality of hot-boned beef loins and topsides. Meat Sci. 2016, 111, 139–146. [Google Scholar] [CrossRef]
- Suwandy, V.; Carne, A.; van de Ven, R.; Bekhit, A.E.-D.; Hopkins, D. Effect of pulsed electric field on the proteolysis of cold boned beef M. Longissimus lumborum and M. Semimembranosus. Meat Sci. 2015, 100, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Indiarto, R.; Pratama, A.W.; Sari, T.I.; Theodora, H.C. Food Irradiation Technology: A Review of The Uses and Their Capabilities. Int. J. Eng. Trends Technol. 2020, 68, 91–98. [Google Scholar] [CrossRef]
- Indiarto, R.; Qonit, M.A.H. A review of irradiation technologies on food and agricultural products. Int. J. Sci. Technol. Res. 2020, 9, 4411–4414. [Google Scholar]
- Maherani, B.; Hossain, F.; Criado, P.; Ben-Fadhel, Y.; Salmieri, S.; Lacroix, M. World Market Development and Consumer Acceptance of Irradiation Technology. Foods 2016, 5, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayathilakan, K.; Sultana, K.; Pandey, M.C. Radiation Processing: An Emerging Preservation Technique for Meat and Meat Products. Def. Life Sci. J. 2017, 2, 133. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, R.; Jaiswal, A.K. Wholesomeness and safety aspects of irradiated foods. Food Chem. 2019, 285, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, E.F.; Lacivita, V.; Conte, A.; Chiaravalle, E.; Zambrini, A.V.; Del Nobile, M.A. X-ray irradiation as a valid technique to prolong food shelf life: The case of ricotta cheese. Int. Dairy J. 2019, 99, 104547. [Google Scholar] [CrossRef]
- Roberts, P.B. Food irradiation: Standards, regulations and world-wide trade. Radiat. Phys. Chem. 2016, 129, 30–34. [Google Scholar] [CrossRef]
- Vasuja, S.; Kumar, V. Ultraviolet Irradiation and its applications in Food Processing Industries: A Review. Int. J. Trend Res. Dev. 2018, 5, 343–346. [Google Scholar]
- Singh, P.K.; Verma, A.K.; Ranjan, R.; Singh, T.P.; Kumar, D.; Kumar, P. Non thermal preservation of meat by irradiation: A review. J. Food Res. Technol. 2015, 3, 7–13. [Google Scholar]
- Park, S.Y.; Ha, S.-D. Ultraviolet-C Radiation on the Fresh Chicken Breast: Inactivation of Major Foodborne Viruses and Changes in Physicochemical and Sensory Qualities of Product. Food Bioprocess. Technol. 2014, 8, 895–906. [Google Scholar] [CrossRef]
- Bottino, F.D.O.; Rodrigues, B.L.; de Nunes Ribeiro, J.D.; Lázaro, C.A.D.L.T.; Conte-Junior, C.A. Influence of UV-C Radiation on Shelf Life of Vacuum Package Tambacu (Colossoma macropomum× Piaractus mesopotamicus) Fillets. J. Food Process. Preserv. 2017, 41, e13003. [Google Scholar] [CrossRef]
- Silva, H.; Costa, M.; Frasao, B.; Mesquita, E.; Mello, S.C.R.P.; Conte-Junior, C.; Franco, R.M.; Miranda, Z. Efficacy of Ultraviolet-C Light to Eliminate S taphylococcus Aureus on Precooked Shredded Bullfrog Back Meat. J. Food Saf. 2015, 35, 318–323. [Google Scholar] [CrossRef]
- Vasilev, D.; Stajkovic, S.; Karabasil, N.; Dimitrijevic, M.; Teodorovic, V. Perspectives in meat processing. IOP Conf. Series: Earth Environ. Sci. 2019, 333, 012024. [Google Scholar] [CrossRef]
- Mahendran, R.; Ramanan, K.R.; Barba, F.J.; Lorenzo, J.M.; Fernández, O.L.; Munekata, P.E.S.; Roohinejad, S.; Sant’Ana, A.S.; Tiwari, B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019, 88, 67–79. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Novaković, S.; Barba, F.; Lorenzo, J.M. The feasibility of pulsed light processing in the meat industry. IOP Conf. Series: Earth Environ. Sci. 2019, 333, 012034. [Google Scholar] [CrossRef]
- Rajkovic, A.; Tomasevic, I.; De Meulenaer, B.; Devlieghere, F. The effect of pulsed UV light on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus and staphylococcal enterotoxin A on sliced fermented salami and its chemical quality. Food Control. 2017, 73, 829–837. [Google Scholar] [CrossRef]
- Koch, F.; Wiacek, C.; Braun, P.G. Pulsed light treatment for the reduction of Salmonella Typhimurium and Yersinia enterocolitica on pork skin and pork loin. Int. J. Food Microbiol. 2018, 292, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2020, 20, 332–368. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Tonello-Samson, C. Chapter 7. High Hydrostatic Pressure Food Processing: Potential and Limitations. In Alternatives to Conventional Food Processing; Royal Society of Chemistry: London, UK, 2018; pp. 251–315. [Google Scholar] [CrossRef]
- Sukmanov, V.; Hanjun, M.; Li, Y.-P. Effect of high pressure processing on meat and meat products. A review. Ukr. Food J. 2019, 8, 448–469. [Google Scholar] [CrossRef]
- Ma, Y.; Yuan, Y.; Bi, X.; Zhang, L.; Xing, Y.; Che, Z. Tenderization of Yak Meat by the Combination of Papain and High-Pressure Processing Treatments. Food Bioprocess. Technol. 2019, 12, 681–693. [Google Scholar] [CrossRef]
- Wgiorgis, G.A.; Yildiz, F. Review on high-pressure processing of foods. Cogent Food Agric. 2019, 5, 1568725. [Google Scholar] [CrossRef]
- Hygreeva, D.; Pandey, M. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology—A review. Trends Food Sci. Technol. 2016, 54, 175–185. [Google Scholar] [CrossRef]
- Horita, C.N.; Baptista, R.C.; Caturla, M.Y.; Lorenzo, J.M.; Barba, F.J.; Sant’Ana, A.S. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci. Technol. 2018, 72, 45–61. [Google Scholar] [CrossRef]
Type of Micro-Organisms | Oxygen Need | Symptoms | References |
---|---|---|---|
Aerobic Bacteria | Present |
| [23] |
Aerobic Bacteria | Absent |
| [23] |
Yeast | Present |
| [20] |
Molds | Present |
| [24] |
Properties | Radio-Frequency | Microwave |
---|---|---|
Work frequency | 13.56, 27.12, 40.68 MHz | 915, 2450 MHz |
In vacuum wavelength | 22.1, 11.1, 7.4 m | 0.33, 0.12 m |
In tap water (penetration depth) | 1.58, 0.79, 0.53 m | 0.02, 0.01 m |
Prime heating mechanism | Migration of ionic charge | Dipole H2O molecule agitation |
System construction | Simple | Complicated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebezov, M.; Farhan Jahangir Chughtai, M.; Mehmood, T.; Khaliq, A.; Tanweer, S.; Semenova, A.; Khayrullin, M.; Dydykin, A.; Burlankov, S.; Thiruvengadam, M.; et al. Novel Techniques for Microbiological Safety in Meat and Fish Industries. Appl. Sci. 2022, 12, 319. https://doi.org/10.3390/app12010319
Rebezov M, Farhan Jahangir Chughtai M, Mehmood T, Khaliq A, Tanweer S, Semenova A, Khayrullin M, Dydykin A, Burlankov S, Thiruvengadam M, et al. Novel Techniques for Microbiological Safety in Meat and Fish Industries. Applied Sciences. 2022; 12(1):319. https://doi.org/10.3390/app12010319
Chicago/Turabian StyleRebezov, Maksim, Muhammad Farhan Jahangir Chughtai, Tariq Mehmood, Adnan Khaliq, Saira Tanweer, Anastasia Semenova, Mars Khayrullin, Andrey Dydykin, Stepan Burlankov, Muthu Thiruvengadam, and et al. 2022. "Novel Techniques for Microbiological Safety in Meat and Fish Industries" Applied Sciences 12, no. 1: 319. https://doi.org/10.3390/app12010319
APA StyleRebezov, M., Farhan Jahangir Chughtai, M., Mehmood, T., Khaliq, A., Tanweer, S., Semenova, A., Khayrullin, M., Dydykin, A., Burlankov, S., Thiruvengadam, M., Shariati, M. A., & Lorenzo, J. M. (2022). Novel Techniques for Microbiological Safety in Meat and Fish Industries. Applied Sciences, 12(1), 319. https://doi.org/10.3390/app12010319