An Efficient Data-Balancing Cyber-Physical System Paradigm for Quality-of-Service (QoS) Provision over Fog Computing
Abstract
:1. Introduction
1.1. Research Contributions
- Efficient data balancing has been maintained in a CPS using three exciting processes: a node advertisement, a node selection and recruitment, and an optimal distance determination with mid-point. These modules enable the physical domain to efficiently maintain a data balance when collecting data from the human central nervous system. Furthermore, using EDB-CPS, hop-to-hope delay is reduced to obtain better throughput.
- An optimal distance determination with mid-point algorithm is introduced to allow the sensor node to identify the nearest actuators to share data efficiently and avoid any potential data loss or data delivery.
1.2. Paper Organization
2. Related Work
3. Proposed CPS-HBM
- a BSN,
- physical domain and data processing,
- an SOA, and
- a data management domain.
3.1. Brain Sensor Network
3.2. Physical Domain and Data Processing
3.3. SOA
- an application layer,
- a service layer,
- an infrastructure layer, and
- a media layer.
3.3.1. The Application Layer
3.3.2. The Service Layer
3.3.3. The Infrastructure Layer
3.3.4. The Media Layer
3.4. Data Management Domain
4. Efficient Data-Balancing for CPS
- A node advertisement process.
- A node selection and recruitment process.
- Optimal distance determination with mid-point.
4.1. Node Advertising Module
4.2. Node Selection and Recruitment Module
4.3. Optimal Distance Determination with Mid-Point Module
Algorithm 1 Optimized distance determination from sensor node to actuator. |
Input:r in |
Output: out |
1: Initialization: { : Origin; : Each point; r: Distance; : Initial centroid distance; : Sorting distance} |
2: Determine r between |
3: Set in ascending order |
4: Separate the r into equal sets |
5: if then |
6: Set |
7: end if |
5. Testing Results
- throughput;
- hop-to-hop delay.
Used Parameters | Detailed Parameters |
---|---|
Transmission range | 30 m |
Sensing range of the node | 25 m |
Initial energy of the node | 5 Joules |
Bandwidth of the node | 45 Kb/s |
Simulation time | 36 min |
Number of sensors | 360 |
Network size | 600 × 600 |
Number of hops in the network | 18 Maximum |
Number of clusters | 06 |
Buffering capacity | 50 Packets buffering capacity at each node |
Mobility model | Lattice mobility model [34]. |
Mobility (Speed of the nodes) | 0 m/s to 15 m/s |
Data packet size | 128 bytes |
Initial pause time | 30 Seconds |
energy | 14 Mw |
energy | 18 Mw |
Power intensity | −18 dBm to 12 dBm |
Sink location in each region | (0, 230) |
Contending paradigm | IA-CPS [26], BSMIC [27], and StreamLAB [33] |
Mobility (speed of the nodes) | 0 m/s to 20 m/s |
5.1. Average Throughput Performance
5.2. Hop-by-Hop Delay
6. Discussion of Results
7. Conclusions and Future Work
7.1. Conclusions
7.2. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sood, S.K.; Rawat, K.S. A fog assisted intelligent framework based on cyber-physical system for safe evacuation in panic situations. Comput. Commun. 2021, 178, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Marwedel, P. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things; Springer Nature: Basingstoke, UK, 2021. [Google Scholar]
- Törngren, M.; Grogan, P.T. How to deal with the complexity of future cyber-physical systems? Designs 2018, 2, 40. [Google Scholar] [CrossRef] [Green Version]
- Sadiku, M.N.O.; Wang, Y.; Cui, S.; Musa, S.M. Cyber-physical systems: A literature review. Eur. Sci. J. 2017, 13, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Qaisar, S.B.; Saeed, H.; Khan, M.F.; Naeem, M.; Anpalagan, A. Network challenges for cyber physical systems with tiny wireless devices: A case study on reliable pipeline condition monitoring. Sensors 2015, 4, 7172–7205. [Google Scholar] [CrossRef] [Green Version]
- Letmathe, P.; Schinner, M. Competence management in the age of cyber physical systems. In Industrial Internet of Things; Springer: Cham, Switzerland, 2017; pp. 595–614. [Google Scholar]
- Alguliyev, R.; Imamverdiyev, Y.; Sukhostat, L. Cyber-physical systems and their security issues. Comput. Ind. 2018, 100, 212–223. [Google Scholar] [CrossRef]
- Humayed, A.; Lin, J.; Li, F.; Luo, B. Cyber-physical systems security—A survey. IEEE Internet Things J. 2017, 4, 1802–1831. [Google Scholar] [CrossRef]
- Cernian, A.; Vasile, N.; Sacala, I.S. Fostering Cyber-Physical Social Systems through an Ontological Approach to Personality Classification Based on Social Media Posts. Sensors 2021, 21, 6611. [Google Scholar] [CrossRef]
- Razaque, A.; Amsaad, F.; Khan, M.J.; Hariri, S.; Chen, S.; Siting, C.; Ji, X. Survey: Cybersecurity vulnerabilities, attacks and solutions in the medical domain. IEEE Access 2019, 7, 168774–168797. [Google Scholar] [CrossRef]
- Aciti, C.; Cayssials, R.; Ferro, E.; Urriza, J.; Orozco, J. Embedded real-time systems in cyber-physical applications: A frequency domain analysis methodology. Int. J. Gen. Syst. 2020, 49, 201–221. [Google Scholar] [CrossRef]
- Jamal, A.A.; Majid, A.A.M.; Konev, A.; Kosachenko, T.; Shelupanov, A. A review on security analysis of cyber physical systems using Machine learning. Mater. Today Proc. 2021; in press. [Google Scholar]
- Yilma, B.A.; Panetto, H.; Naudet, Y. Systemic formalisation of Cyber-Physical-Social System (CPSS): A systematic literature review. Comput. Ind. 2021, 129, 103458. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Aswathy, S.U.; Aghila, G.; Sreenath, N. AARIN: Affordable, accurate, reliable and innovative mechanism to protect a medical cyber-physical system using blockchain technology. Int. J. Intell. Netw. 2021, 2, 175–183. [Google Scholar] [CrossRef]
- Ravikumar, G.; Hyder, B.; Govindarasu, M. Hardware-in-the-loop cps security architecture for der monitoring and control applications. In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020; pp. 1–5. [Google Scholar]
- Gatouillat, A.; Badr, Y.; Massot, B.; Sejdic, E. Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J. 2018, 5, 3810–3822. [Google Scholar] [CrossRef] [Green Version]
- Razaque, A.; Frej, M.B.H.; Alotaibi, B.; Alotaibi, M. Privacy Preservation Models for Third-Party Auditor over Cloud Computing: A Survey. Electronics 2021, 10, 2721. [Google Scholar] [CrossRef]
- Lv, Z.; Han, Y.; Singh, A.K.; Manogaran, G.; Lv, H. Trustworthiness in industrial IoT systems based on artificial intelligence. IEEE Trans. Ind. Inform. 2020, 17, 1496–1504. [Google Scholar] [CrossRef]
- Wang, H.; Fan, K.; Zhang, K.; Wang, Z.; Li, H.; Yang, Y. Secure and Efficient Data Privacy-preserving Scheme for Mobile Cyber Physical Systems. IEEE Internet Things J. 2021, 1. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V.; Ding, M.; Huang, C. Mobile robots in wireless sensor networks: A survey on tasks. Comput. Netw. 2019, 148, 1–19. [Google Scholar] [CrossRef]
- Weichhart, G.; Panetto, H.; Molina, A. Interoperability in the cyber-physical manufacturing enterprise. Annu. Rev. Control. 2021, 51, 346–356. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Xu, X.; Zhao, Q. Dynamic defenses in cyber security: Techniques, methods and challenges. Digit. Commun. Netw. 2021; in press. [Google Scholar] [CrossRef]
- Razaque, A.; Al Ajlan, A.; Melaoune, N.; Alotaibi, M.; Alotaibi, B.; Dias, I.; Oad, A.; Hariri, S.; Zhao, C. Avoidance of Cybersecurity Threats with the Deployment of a Web-Based Blockchain-Enabled Cybersecurity Awareness System. Appl. Sci. 2021, 11, 7880. [Google Scholar] [CrossRef]
- Bordel, B.; Alcarria, R.; Robles, T.; Martín, D. Cyber–physical systems: Extending pervasive sensing from control theory to the Internet of Things. Pervasive Mob. Comput. 2017, 40, 156–184. [Google Scholar] [CrossRef]
- Chang, K.C.; Chu, K.C.; Wang, H.C.; Lin, Y.C.; Pan, J.S. Agent-based middleware framework using distributed CPS for improving resource utilization in smart city. Future Gener. Comput. Syst. 2020, 108, 445–453. [Google Scholar] [CrossRef]
- Gomez, H.D.; Garcia-Rodriguez, J.; Azorin-Lopez, J.; Tomas, D.; Fuster-Guillo, A.; Mora-Mora, H. IA-CPS: Intelligent architecture for cyber-physical systems management. J. Comput. Sci. 2021, 53, 101409. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Kang, K.; Wang, Z.; Zhong, R.Y.; Huang, G.Q. Blockchain-enabled cyber-physical smart modular integrated construction. Comput. Ind. 2021, 133, 103553. [Google Scholar] [CrossRef]
- Latif, S.A.; Wen, F.B.X.; Iwendi, C.; Li-li, F.W.; Mohsin, S.M.; Han, Z.; Band, S.S. AI-empowered, blockchain and SDN integrated security architecture for IoT network of cyber physical systems. Comput. Commun. 2021, 181, 274–283. [Google Scholar] [CrossRef]
- Kabashkin, I. Reliability of cluster-based nodes in wireless sensor networks of cyber physical systems. Procedia Comput. Sci. 2019, 151, 313–320. [Google Scholar] [CrossRef]
- Li, S.; Zhao, P. Big data driven vehicle battery management method: A novel cyber-physical system perspective. J. Energy Storage 2021, 33, 102064. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Tripathy, P.K.; Mohapatra, A.G.; Ray, N.K.; Mohanty, S.P. WeDoShare: A ridesharing framework in transportation cyber-physical system for sustainable mobility in smart cities. IEEE Consum. Electron. Mag. 2020, 9, 41–48. [Google Scholar] [CrossRef]
- Deka, L.; Khan, S.M.; Chowdhury, M.; Ayres, N. Transportation cyber-physical system and its importance for future mobility. In Transportation Cyber-Physical Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–20. [Google Scholar]
- Faymonville, P.; Finkbeiner, B.; Schledjewski, M.; Schwenger, M.; Stenger, M.; Tentrup, L.; Torfah, H. StreamLAB: Stream-based monitoring of cyber-physical systems. In Proceedings of the International Conference on Computer Aided Verification, New York, NY, USA, 15–18 July 2019; Springer: Cham, Switzerland; pp. 421–431. [Google Scholar]
- Al-Rahayfeh, A.; Razaque, A.; Jararweh, Y.; Almiani, M. Location-Based Lattice Mobility Model for Wireless Sensor Networks. Sensors 2018, 18, 4096. [Google Scholar] [CrossRef] [Green Version]
Notation | Description |
---|---|
Network area | |
Recruiting actuator | |
Mean distance from actor to base station | |
Distance of the recruited sensor from the recruiting cluster head sensor | |
Distance of the recruited sensor from its domain to the recruiting sensor’s domain | |
Amplifier energy of free space | |
Monitoring point | |
Multipath energy | |
Recruited sensor sensing data | |
Recruited sensor | |
New vector that indicates the probability of a grid station | |
Recruited sensor sensing data | |
R | Probability of the recruited sensor |
Number of sensor nodes | |
t | Recruitment time |
Adjacent cluster domain or Nonadjacent cluster domain | |
Number of recruited sensors |
Model | Throughput without Malicious Nodes | Throughput with 5% Malicious Nodes | Hop-to-Hop Delay with 27 Hops | Hop-to-Hop Delay with 54 Hops |
---|---|---|---|---|
LA-CPS | 437.9 kb/s | 432.3 kb/s | 0.667 ms | 0.667 ms |
BS-MIC | 441.3 kb/s | 429.3 kb/s | 0.609 ms | 0.097 ms |
StreamLAB | 438.3 kb/s | 434.2 kb/s | 0.642 ms | 0.094 ms |
EDB-CPS | 445.2 kb/s | 443.2 kb/s | 0.05 ms | 0.078 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almiani, M.; Razaque, A.; Alotaibi, B.; Alotaibi, M.; Amanzholova, S.; Alotaibi, A. An Efficient Data-Balancing Cyber-Physical System Paradigm for Quality-of-Service (QoS) Provision over Fog Computing. Appl. Sci. 2022, 12, 246. https://doi.org/10.3390/app12010246
Almiani M, Razaque A, Alotaibi B, Alotaibi M, Amanzholova S, Alotaibi A. An Efficient Data-Balancing Cyber-Physical System Paradigm for Quality-of-Service (QoS) Provision over Fog Computing. Applied Sciences. 2022; 12(1):246. https://doi.org/10.3390/app12010246
Chicago/Turabian StyleAlmiani, Muder, Abdul Razaque, Bandar Alotaibi, Munif Alotaibi, Saule Amanzholova, and Aziz Alotaibi. 2022. "An Efficient Data-Balancing Cyber-Physical System Paradigm for Quality-of-Service (QoS) Provision over Fog Computing" Applied Sciences 12, no. 1: 246. https://doi.org/10.3390/app12010246
APA StyleAlmiani, M., Razaque, A., Alotaibi, B., Alotaibi, M., Amanzholova, S., & Alotaibi, A. (2022). An Efficient Data-Balancing Cyber-Physical System Paradigm for Quality-of-Service (QoS) Provision over Fog Computing. Applied Sciences, 12(1), 246. https://doi.org/10.3390/app12010246