Remediation of Metal/Metalloid-Polluted Soils: A Short Review
Abstract
:1. Introduction
- physical methods (landfilling and leaching, excavation, soil washing, calcination) that permit high removal efficiency and the treatment of large quantities of soil, but are expensive;
- chemical methods (soil washing, electrochemical remediation, adsorption) that are very effective, but can be a source of new chemical contaminants introduced into soils, for example, in soil washing;
- physical–chemical processes (ion-exchange, precipitation, reverse osmosis, evaporation, and chemical reduction) which are simple and easy to apply, but have a high-cost burden;
- bioremediation processes (bioventing, biosparging, bioaugmentation, biostimulation) which are environmentally friendly and cost-effective, but the degradation time is slower than in other treatments.
2. Origin, Characteristics, and Properties of Heavy Metals and Metalloids
3. Toxicology
3.1. Presence and Distribution into the Environment
3.2. Health Impacts Over Short, Medium, and Long Term
- Chromium (Cr): it is found in the environment in different oxidation states (−2 to +6), but the most stable forms are trivalent (III) and hexavalent (VI). Chromium(VI) is more absorbed than chromium(III) by the human body through inhalation, ingestion, and dermal contact, due to its high solubility and mobility. Chromium(VI) enters into the cell via a nonspecific anion channel via facilitated diffusion, while chromium(III) enters by passive diffusion or phagocytosis. The main organs that are influenced are the liver, kidney, spleen, and bone. The hexavalent form can easily penetrate red blood cells [39]. The main toxic effects of chromium for humans are ulcers, dermatitis, perforation of the nasal septum, and respiratory cancer. In soil, chromium alters the structure of microbial communities and reduces their growth [40].
- Copper (Cu): this element is essential in many biological processes (oxidation, photosynthesis, and carbohydrate, protein, and cell wall metabolism) [41]. Excessive concentration of copper leads to the formation of free radical species that damage the cell and inactivate some enzymes, threatening the environment, microbes, and human health [42]. In particular, the accidental ingestion of copper may cause nausea, vomiting, and abdominal pain, whereas a prolonged exposure leads to chronic effects, involving the liver and kidneys [36]. In the plants, copper accumulates in the roots, reducing their growth and the ability to absorb other trace elements useful for plant development [43].
- Zinc (Zn): is a trace element essential for all organisms, important in nucleic acid and protein metabolism, in cell growth, division, and function [44]. Excessive concentration in food or potable water may cause vomiting, muscle cramps, and renal damage [45]. In plants, a high concentration of zinc leads to a decrease in growth (both roots and shoots) and development of the plant, chlorosis, alteration in metabolism processes, and induction of oxidative damage [46].
- Cadmium (Cd): has eight stable isotopes, the most common are 112Cd and 114Cd. Cadmium forms various complexes with amines, sulfur, chlorine, and chelates. Depending on the form, it has different clinical manifestations and toxic effects. Cadmium interferes with cell proliferation, differentiation, apoptosis, and DNA repair mechanism. The common clinical effects are skeletal demineralization, kidney, and liver problems [47]. Excess accumulation in plants can influence both photosynthesis and respiration, transport, and assimilation of mineral nutrients, affecting plant growth and development [48].
- Lead (Pb): lead poisoning occurs mainly by the ingestion of food and water. It is quickly absorbed into the bloodstream, damaging various systems [49]. Different studies have reported the dangerous effects of lead on the neurologic system, such as irritability, agitation, headaches, confusion, ataxia, drowsiness, convulsions, and coma, and has an effect on renal functions, the body development, and the lymphatic system [50].
- Mercury (Hg): in the environment, mercury can be present in the form of both organic and inorganic (Hg, Hg22+, Hg2+) compounds. Mercury tends to deposit in many parts of the human body, damaging the brain, thyroid, breast, myocardium, muscles, liver, kidneys, skin, and pancreas. Among them, the nervous system is the most affected [51]. Inorganic mercury can inhibit the activity of enzymes in the body and destroy the normal metabolism of cells. The organic form has a great negative effect on brain function and can enter through the food chain [52].
- Arsenic (As): it is present in the environment in organic and inorganic forms, the most common and toxic forms are arsenate and arsenite. Arsenate can cause damage to the plant since it affects phosphate metabolism, while arsenite binds to sulfhydryl groups of proteins, interfering with their structures and functions [53,54]. Chronic exposure to this metalloid causes cutaneous lesions, such as melanosis (hyperpigmentation), keratosis, and leukomelanosis (hypopigmentation); lung, bladder, liver, and kidney cancers; ischemic heart diseases, impaired cognitive abilities, motor functions, and hormonal regulations [55].
- RI < 150: the ecological risk is low;
- 150 ≤ RI ≤ 300: the ecological risk is moderate;
- 300 ≤ RI ≤ 600: the ecological risk is considerable;
- RI ≥ 600: the ecological risk is very high.
4. Removal Techniques
- in situ: the treatment is carried out directly on the site where the pollution is present, and there is no need to move/excavate the soil;
- on site: the soil is removed and processed on site surrounding the polluted area. The technique can be carefully monitored and kept under control;
- exsitu: the remediation occurs at a site far from the polluted area, and this entails soil excavation, its transport to a processing plant, and often transport back to the original site.
4.1. Physical Processes
4.1.1. Physical Separation
- Screening: the particle separation occurs on the basis of particle size, by passing (or not) through screen holes.
- Hydrodynamic separation: this operation exploits the different settling velocities of particles in a water flow; as an alternative, the different effects of centrifugal force can be applied.
- Froth flotation: the method exploits the differences in hydrophobic properties to separate metal-bearing particles from the soil matrix through air bubbles injected in a soil slurry.
- Magnetic separation: separates particles based on their different magnetic properties.
- Soil washing: the contaminates are desorbed and extracted from soil with an extractant solution.
4.1.2. Soil Replacement
4.1.3. Thermal Treatment
4.1.4. Vitrification
4.2. Chemical Processes
4.2.1. Chemical Stabilization
4.2.2. Nanoparticles
4.2.3. Stabilization/Solidification
4.2.4. Chemical Soil Washing
4.2.5. Electrochemical Remediation
- In these conditions, usually, the metals are in an ionic form; this is to say they can be mobilized from soil.
- The vegetal regeneration of soil could be limited and made more difficult.
4.3. Biological Processes
4.3.1. Microbial Bioremediation
Biosorption
- Bacteria: heavy metal ions can be bound and accumulated on polysaccharide slime layers of bacteria through functional groups, such as carboxyl, amino, phosphate, or sulfate groups.
- Fungi: are used to adsorb the heavy metals and metalloids through ion exchange and coordination in the chitin–chitosan complex, glucuronic acid, phosphate, and polysaccharides present in their cells.
- Algae: the absorption of heavy metals/metalloids occurs since algae form peptides as a defense mechanism. The functional groups (carboxyl, amino, sulfhydryl, and sulfonate) are among the constituents of the algal cell wall, and ion exchange promotes the adsorption of metal ions.
Bioleaching
- several microorganisms cannot bind toxic metals into harmless metabolites;
- the process is slower than others;
- it is efficient if the environmental conditions are suitable for microbial metabolism.
4.3.2. Phytoremediation
Phytostabilization
Phytoevaporation
Phytoextraction
5. Case Studies and Estimation Costs
- for soil washing, the cost is in the range of 200 USD·m−3 (small sites) to 70 USD·m−3 (large sites);
- for phytoextraction, the cost can go from 35 USD·m−3 (small sites) to 10 USD·m−3 (large sites).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atieh, M.A.; Ji, Y.; Kochkodan, V. Metals in the Environment: Toxic Metals Removal. Bioinorg. Chem. Appl. 2017, 2017, 4309198. [Google Scholar] [CrossRef]
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy Metal Contamination of Soil: Sources, Indicators, and Assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Chen, T.; Xu, W.; Huang, J.; Jiang, S.; Yan, B. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review. Molecules 2020, 25, 3167. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Ippolito, J.A.; Xing, W.; Qiu, K.; Yang, H. Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans. Environ. Pollut. 2020, 257, 113614. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Lin, J.; Xie, D.; Yao, Y.; Wang, X.; Huang, Y.; Xin, M.; Yang, F.; Liu, K.; Li, Y. Soil properties and heavy metal concentrations affect the composition and diversity of the diazotrophs communities associated with different land use types in a mining area. Appl. Soil Ecol. 2020, 155, 1030669. [Google Scholar] [CrossRef]
- Yan, D.; Bai, Z.; Liu, X. Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China. Sustainability 2020, 12, 1907. [Google Scholar] [CrossRef] [Green Version]
- Bocardi, J.M.B.; Pletsch, A.L.; Melo, V.F.; Quinaina, S.P. Quality reference values for heavy metals in soils developed from basic rocks under tropical conditions. J. Geochem. Explor. 2020, 217, 106591. [Google Scholar] [CrossRef]
- Brito, A.C.C.; Boechat, C.L.; de Sena, A.F.S.; Duarte, L.d.S.L.; do Nascimento, C.W.A.; da Silva, Y.J.A.B.; Saraiva, P.C. Assessing the Distribution and Concentration of Heavy Metals in Soils of an Agricultural Frontier in the Brazilian Cerrado. Water Air Soil Pollut. 2020, 231, 388. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Singh, J.; Taneja, P.K.; Mandal, A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environ. Sci. Pollut. Res. 2020, 27, 1319–1333. [Google Scholar] [CrossRef]
- Sivakumar, D.; Kandaswamy, A.N.; Gomathi, V.; Rajeshwaran, R.; Murugan, N. Bioremediation studies on reduction of heavy metals toxicity. Pollut. Res. 2014, 33, 553–558. [Google Scholar]
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—Proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Caporale, A.G.; Violante, A. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Salomons, W.; Forstner, U.; Mader, P. Heavy Metals Problems and Solutions, 1st ed.; Springer: Heidelberg, Germany, 1995; ISBN 9783642793189. [Google Scholar]
- Koller, M.; Saleh, H.M. Introductory Chapter: Introducing Heavy Metals. In Heavy Metals; Saleh, H.M., Aglan, R., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Wang, L.K.; Chen, J.P.; Hung, Y.-T.; Shammas, N.K. Heavy Metals in the Environment; Taylor & Francis Group: Broken Sound Parkway, NW, USA, 2009; ISBN 9781420073164. [Google Scholar]
- Statista. Available online: https://www.statista.com/ (accessed on 2 December 2020).
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef] [PubMed]
- New York State. New York State Brownfield Cleanup Program Development of Soil Cleanup Objectives Technical Support Document; New York State Department of Environmental Conservation and New York State Department of Health: Albany, NY, USA, 2006.
- Decreto Legislativo n. 152 del 3 aprile 2006 “Norme in materia ambientale”, Supplemento Ordinario alla “Gazzetta Ufficiale” n. 88 del 14 aprile 2006. Available online: https://www.camera.it/parlam/leggi/deleghe/06152dl.htm (accessed on 2 December 2020).
- Government Decree on the Assessment of Soil Contamination and Remediation Needs 214/2007, 1 March 2007; Ministry of Environment: Helsinki, Finland, 2007; (the legally binding document is In Finnish or Swedish).
- Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act; Canadian Ministry of the Environment (CME): Toronto, ON, Canada, 15 April 2011.
- Real Decreto 1310/1990, de 29 de octubre, por el que se regula la utilización de los lodos de depuración en el sector agrario. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1990-26490 (accessed on 2 December 2020).
- Zhou, W.; Han, G.; Liu, M.; Song, C.; Li, X.; Malem, F. Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand. Int. J. Environ. Res. Public Health 2020, 17, 1745. [Google Scholar] [CrossRef] [Green Version]
- Vacca, A.; Bianco, M.R.; Murolo, M.; Violante, P. Heavy metals in contaminated soils of the Rio Sitzerri floodplain (Sardinia, Italy): Characterization and impact on pedodiversity. Land Degrad. Dev. 2012, 23, 350–364. [Google Scholar] [CrossRef]
- Cicchella, D.; Giaccio, L.; Lima, A.; Albanese, S.; Cosenza, A.; Civitillo, D.; De Vivo, B. Assessment of the topsoil heavy metals pollution in the Sarno River basin, south Italy. Environ. Earth Sci. 2014, 71, 5129–5143. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Fan, T.T.; Wang, Y.-J.; Li, C.-B.; He, J.-Z.; Gao, J.; Zhou, D.-M.; Friedman, S.P.; Sparks, D.L. Effect of Organic Matter on Sorption of Zn on Soil: Elucidation by Wien Effect Measurements and EXAFS Spectroscopy. Environ. Sci. Technol. 2016, 50, 2931–2937. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Liao, R.; Ali, A.; Mahar, A.; Guo, D.; Li, R.; Sun, X.; Awasthi, M.K.; Wang, Q.; Zhang, Z. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 2017, 139, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A.; Sarim, M. Heavy metals distribution in different soil series of district Swabi, Khyber Pakhunkhawa, Pakistan. World Sci. News 2018, 105, 1–13. [Google Scholar]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221–222, 82–90. [Google Scholar] [CrossRef]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Review: Nutritional ecology of heavy metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef] [Green Version]
- Mahurpawar, M. Effects of heavy metals on human health. Int. J. Res. Granthaalayah 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [Green Version]
- Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; et al. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef] [Green Version]
- Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium Toxicity and its Health Hazards. Int. J. Adv. Res. 2015, 7, 167–172. [Google Scholar]
- Mishra, S.; Bharagava, R.N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Heal. Part C 2016, 34, 1–32. [Google Scholar] [CrossRef]
- Kumar, V.; Kalita, J.; Misra, U.K.; Bora, H.K. A study of dose response and organ susceptibility of copper toxicity in a rat model. J. Trace Elem. Med. Biol. 2015, 29, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Xie, P.; Zhu, Y.; Taghavi, S.; Wei, G.; Rensing, C. Copper Tolerance Mechanisms of Mesorhizobium amorphae and Its Role in Aiding Phytostabilization by Robinia pseudoacacia in Copper Contaminated Soil. Environ. Sci. Technol. 2015, 49, 2328–2340. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Ali, S.; Kamran, M.; Iqbal, N.; Azeem, M.; Javed, M.T.; Ali, Q.; Haider, M.Z.; Irshad, S.; Rizwan, M.; et al. Ethylenediaminetetraacetic Acid (EDTA) Mitigates the Toxic Effect of Excessive Copper Concentrations on Growth, Gaseous Exchange and Chloroplast Ultrastructure of Corchorus capsularis L. and Improves Copper Accumulation Capabilities. Plants 2020, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkan, F.A.; Kilinc, E.; Gulyasar, T.; Or, M.E. Evaluation of zinc and copper toxicity caused by ingestion of Turkish coins: An in vitro study. J. Elementol. 2020, 25, 961–971. [Google Scholar] [CrossRef]
- Ackova, D.G. Heavy metals and their general toxicity on plants. Plant Sci. Today 2018, 5, 15–19. [Google Scholar]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Liu, L.; Shank, Y.K.; Li, L.; Chen, Y.H.; Qin, Z.Z.; Zhou, L.J.; Yuan, M.; Ding, C.B.; Liu, J.; Huang, Y.; et al. Cadmium stress in Dongying wild soybean seedling: Growth, Cd accumulation, and photosynthesis. Photosynthetica 2018, 56, 1346–1352. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Gidlow, D.A. Lead toxicity. Occup. Med. 2015, 65, 348–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreoli, V.; Sprovieri, F. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview. Int. J. Environ. Res. Public Health 2017, 14, 93. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-D.; Zheng, W. Human Exposure and Health Effects on Inorganic and Elemental Mecury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Islam, F.; Ali, B.; Najeeb, U.; Mao, B.; Gill, R.A.; Yan, G.; Siddique, K.H.M.; Zhou, W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 2016, 132, 42–52. [Google Scholar] [CrossRef]
- Awasthi, S.; Chauhan, R.; Srivastava, S.; Tripathi, R.D.; Peña-Castro, J.M. The Journey of Arsenic from Soil to Grain in Rice. Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, A.; Ghosh, D.; Dash, A.; Bose, S. Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Curr. Pollut. Rep. 2015, 1, 35–56. [Google Scholar] [CrossRef] [Green Version]
- Hàkanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Pan, X.-D.; Wu, P.-G.; Jiang, X.-G. Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Sci. Rep. 2016, 6, 20317. [Google Scholar] [CrossRef] [Green Version]
- Baran, A.; Wieczorek, J.; Mazurek, R.; Urbański, K.; Klimkowicz-Pawlas, A. Potential ecological risk assessment and predicting zinc accumulation in soils. Environ. Geochem. Health 2018, 40, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Leung, J.Y.S.; Geng, X.; Chen, S.; Huang, X.; Li, H.; Huang, Z.; Zhu, L.; Chen, J.; Lu, Y. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci. Total Environ. 2015, 506–507, 217–225. [Google Scholar] [CrossRef]
- Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Boente, C.; Sierra, C.; Rodrìguez-Valdés, E.; Menéndez-Aguado, J.M.; Gallego, J.R. Soil washing optimization by means of attributive analysis: Case study for the removal of potentially toxic elements from soil contaminated with pyrite ash. J. Clean. Prod. 2017, 142, 2693–2699. [Google Scholar] [CrossRef]
- Liao, X.; Li, Y.; Yan, X. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process. J. Environ. Sci. 2016, 41, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Son, Y. Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrason. Sonochem. 2017, 35, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.M.; Sung, K. Influence of washing treatment on the qualities of heavy metal–contaminated soil. Ecol. Eng. 2015, 81, 89–92. [Google Scholar] [CrossRef]
- Wang, P.; Hu, X.; He, Q.; Waigi, M.G.; Wang, J.; Ling, W. Using Calcination Remediation to Stabilize Heavy Metals and Simultaneously Remove Polycyclic Aromatic Hydrocarbons in Soil. Int. J. Environ. Res. Public Health 2018, 15, 1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.C.; Yen, J.H. On-site mercury-contaminated soils remediation by using thermal desorption technology. J. Hazard. Mater. 2006, 128, 208–217. [Google Scholar] [CrossRef]
- Ballesteros, S.; Rincón, J.M.; Rincón-Mora, B.; Jordán, M.M. Vitrification of urban soil contamination by hexavalent chromium. J. Geochem. Explor. 2017, 174, 132–139. [Google Scholar] [CrossRef]
- Ullah, A.; Ma, Y.; Li, J.; Tahir, N.; Hussain, B. Effective Amendments on Cadmium, Arsenic, Chromium and Lead Contaminated Paddy Soil for Rice Safety. Agronomy 2020, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Taki, G.; Nguye, X.P.; Jo, Y.-T.; Kim, J.; Park, J.-H. Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell. Environ. Sci. Pollut. Res. 2017, 24, 7177–7183. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, X.; Chen, Z. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 2011, 45, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yi, K.; Zhang, X.; Han, P.; Liu, W.; Tong, M. Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity. J. Hazard. Mater. 2020, 388, 121822. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wu, J.; Xu, Y.; Wang, F.; Tang, X.; Xu, J.; Ok, Y.S.; Meng, J.; Liu, X. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses. Environ. Pollut. 2020, 260, 114098. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, L.; Meng, J.; Liu, X.; Xu, J.; Wang, F.; Brookes, P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Chen, X.; Xu, Z.; Xu, X.; Zhao, L.; Qui, H.; Cao, X. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation. J. Hazard. Mater. 2020, 398, 122901. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, M.; Li, H. Synthesis of Nanoscale Zerovalent Iron (nZVI) supported on biochar for chromium remediation from aqueous solution and soil. Int. J. Environ. Res. Public Health 2019, 16, 4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, G.; Zhu, Y.; Wen, J.; Pei, Y.; Li, H. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. Environ. Pollut. 2020, 256, 113407. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Peng, Z.; Huang, D.; Zeng, G.; Wan, J.; Xu, R.; Cheng, M.; Zhang, C.; Jiang, D.; Hu, Z. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbon changes. J. Hazard. Mater. 2018, 359, 290–299. [Google Scholar] [CrossRef]
- Tomašević Filipović, D.; Kerkez, D.; Dalmacija, B.; Slijepčević, N.; Krčmar, D.; Rađenović, D.; Bečelić-Tomin, M. Remediation of toxic metal contaminated sediment using three types of nZVI supported materials. Bull. Environ. Contam. Toxicol. 2018, 101, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, F.; Wang, W.; Zhang, S.; Wang, F. Remediation of Cr(VI)-contaminated soil by Nano-Zero-Valent Iron in combination with biochar or humic acid and the consequences for plant performance. Toxics 2020, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.-J.; Jiang, J.-Y.; Wang, S.; Guo, Y.-P.; Ding, H. Assessment of water-soluble thiourea-formaldehyde (WTF) resin for stabilization/solidification (S/S) of heavy metal contaminated soils. J. Hazard. Mater. 2018, 346, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zhang, S.; Zhong, Q.; Wang, G.; Pan, X.; Xu, X.; Zhou, W.; Li, T.; Luo, L.; Zhang, Y. Soil washing remediation of heavy metal from contaminated soil with EDTMP and PAA: Properties, optimization, and risk assessment. J. Hazard. Mater. 2020, 381, 120997. [Google Scholar] [CrossRef]
- Wang, G.; Pan, X.; Zhang, S.; Zhong, Q.; Zhou, W.; Zhang, X.; Wu, J.; Vijver, M.G.; Peijnenburg, W.J.G.M. Remediation of heavy metal contaminated soil by biodegradable chelator–induced washing: Efficiencies and mechanisms. Environ. Res. 2020, 186, 109554. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Huang, B.; Luo, N.; Huang, M.; Zhang, Q.; Zeng, G. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ. 2018, 635, 92–99. [Google Scholar] [CrossRef]
- Cameselle, C.; Pena, A. Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals. Process Saf. Environ. Prot. 2016, 104, 209–217. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Tan, W.; Liu, C.; Dang, Z.; Qiu, G. Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environ. Pollut. 2020, 264, 114745. [Google Scholar] [CrossRef]
- Xu, J.; Liu, C.; Hsu, P.-C.; Zhao, J.; Wu, T.; Tang, J.; Liu, K.; Cui, Y. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nat. Commun. 2019, 10, 2240. [Google Scholar] [CrossRef] [Green Version]
- Han, J.-G.; Hong, K.-K.; Kim, Y.-W.; Lee, J.-Y. Enhanced electrokinetic (E/K) remediation on copper contaminated soil by CFW (carbonized foods waste). J. Hazard. Mater. 2010, 177, 530–538. [Google Scholar] [CrossRef]
- Rosa, M.A.; Egido, J.A.; Márquez, M.C. Enhanced electrochemical removal of arsenic and heavy metals from mine tailings. J. Taiwan Inst. Chem. Eng. 2017, 78, 409–415. [Google Scholar] [CrossRef]
- Jaafer, R.; Al-Sulami, A.; Al-Taee, A. The biosorption ability of shewanella oneidensis for cadmium and lead isolated from soil in Basra Governorate, Iraq. Pollut. Res. 2019, 38, 267–270. [Google Scholar]
- Akhter, K.; Ghous, T.; Andleeb, S.; Nasim, F.H.; Ejaz, S.; Zain-ul-Abdin; Khan, B.A.; Ahmed, M.N. Bioaccumulation of Heavy Metals by Metal-Resistant Bacteria Isolated from Tagetes minuta Rhizosphere, Growing in Soil Adjoining Automobile Workshops. Pak. J. Zool. 2017, 49, 1841–1846. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, X.; Yang, H.; Sun, L. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp. J. Environ. Chem. Eng. 2017, 5, 3616–3621. [Google Scholar] [CrossRef]
- Wang, T.; Sun, H.; Ren, X.; Li, B.; Mao, H. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil. Sci. Rep. 2017, 7, 12114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bano, A.; Hussain, J.; Akbar, A.; Mehmood, K.; Anwar, M.; Hasni, M.S.; Ullah, S.; Sajid, S.; Ali, I. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 2018, 199, 218–222. [Google Scholar] [CrossRef]
- Hassan, A.; Pariatamby, A.; Ahmed, A.; Auta, H.S.; Hamid, F.S. Enhanced Bioremediation of Heavy Metal Contaminated Landfill Soil Using Filamentous Fungi Consortia: A Demonstration of Bioaugmentation Potential. Water Air Soil Pollut. 2019, 230. [Google Scholar] [CrossRef]
- Hassan, A.; Periathamby, A.; Ahmed, A.; Innocent, O.; Hamid, F.S. Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. J. Soils Sediments 2020, 20, 66–80. [Google Scholar] [CrossRef]
- Iram, S.; Shabbir, R.; Zafar, H.; Javaid, M. Biosorption and Bioaccumulation of Copper and Lead by Heavy Metal-Resistant Fungal Isolates. Arab. J. Sci. Eng. 2015, 40, 1867–1873. [Google Scholar] [CrossRef]
- Taleel, M.M.; Ghoml, N.K.; Jozl, S.A. Arsenic Removal of Contaminared Soil by Phytoremediation of Vetiver Grass, Chara Algae and Water Hyacinth. Bull. Environ. Contam. Toxicol. 2019, 102, 134–139. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, W.; Yang, W.; Liang, L.; Yao, W.; Chai, L.; Gao, S.; Liao, Q. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. Chemosphere 2018, 206, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.M.; Wang, Q.P.; Tang, C.; Chen, Z.L. Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans—A comparative study. J. Soils Sediments 2012, 12, 900–908. [Google Scholar] [CrossRef]
- Ancona, V.; Caracciolo, B.; Campanale, C.; Rascio, I.; Grenni, P.; Di Lenola, M.; Bagnuolo, G.; Felice, V. Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. J. Chem. Biotechnol. 2019, 95, 940–949. [Google Scholar] [CrossRef]
- Zacchini, M.; Pietrini, F.; Mugnozza, G.S.; Iori, V.; Pietrosanti, L.; Massacci, A. Metal Tolerance, Accumulation and Translocation in Poplar and Willow Clones Treated with Cadmium in Hydroponics. Water Air Soil Pollut. 2009, 197, 23–34. [Google Scholar] [CrossRef]
- Zacchini, M.; Iori, V.; Scarascia Mugnozza, G.; Pietrini, F.; Massacci, A. Cadmium accumulation and tolerance in Populus nigra and Salix alba. Biol. Plant. 2011, 55, 383–386. [Google Scholar] [CrossRef]
- Courchesne, F.; Turmel, M.-C.; Cloutier-Hurteau, B.; Constantineau, S.; Munro, L.; Labrecque, M. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada. Int. J. Phytoremediat. 2017, 19, 545–554. [Google Scholar] [CrossRef]
- Eskandari, H.; Amraie, A.A. Ability of some crops for phytoremediation of nickel and zinc heavy metals from contaminated soils. J. Adv. Environ. Health Res. 2016, 4, 234–239. [Google Scholar] [CrossRef]
- Jia, W.; Lv, S.; Feng, J.; Li, J.; Li, Y.; Li, S. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. Environ. Sci. Pollut. Res. 2016, 23, 18823–18831. [Google Scholar] [CrossRef]
- Dinh, T.T.T. Evaluating the growth capacity and heavy metal absorption of sweet sorghum and grain sorghum at the seedling stage. J. Agric. Dev. 2018, 17, 44–48. [Google Scholar]
- Abdulhamid, Y.; Abdulsalam, M.S.; Matazu, I.K.; Suleiman, A.B. Phytoremediation of some heavy metals in industrially contaminated dumpsite soil by hyptis suaveolens and physalis philadelphica. Katsina J. Nat. Appl. Sci. 2017, 6, 168–178. [Google Scholar]
- Yang, Y.; Zhou, X.; Tie, B.; Peng, L.; Li, H.; Wang, K.; Zeng, Q. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 2017, 188, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Saran, A.; Fernandez, L.; Cora, F.; Savio, M.; Thijs, S.; Vangronsveld, J.; Merini, L.J. Phytostabilization of Pb and Cd polluted soils using Helianthus petiolaris as pioneer aromatic plant species. Int. J. Phytoremediat. 2020, 22, 459–467. [Google Scholar] [CrossRef]
- Mahmood-ul-Hassan, M.; Yousra, M.; Saman, L.; Ahmad, R. Floriculture: Alternate non-edible plants for phyto-remediation of heavy metal contaminated soils. Int. J. Phytoremediat. 2020, 22, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Chirakkara, R.A.; Reddy, K.R.; Cameselle, C. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil. Electrochim. Acta 2015, 181, 179–191. [Google Scholar] [CrossRef]
- Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. [Google Scholar] [CrossRef]
- Sigua, G.C.; Novak, J.M.; Watts, D.W.; Ippolito, J.A.; Ducey, T.F.; Johnson, M.G.; Spokas, K.A. Phytostabilization of Zn and Cd in Mine Soil Using Corn in Combination with Biochars and Manure-Based Compost. Environments 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.S.; Ruiz, O.N.; Terry, N.; Daniell, H. Phytoremediation of Mercury and Organomercurials in Chloroplast Transgenic Plants: Enhanced Root Uptake, Translocation to Shoots and Volatilization. Environ. Sci. Technol. 2007, 41, 8439–8446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakakibara, M.; Watanabe, A.; Sano, S.; Inoue, M.; Kaise, T. Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Amherst, MA, USA, 16–19 October 2006; Volume 12. [Google Scholar]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef]
- Dos Santos, J.V.; Varón-López, M.; Soares, C.R.F.S.; Lopes Leal, P.; Siqueira, J.O.; de Souza Moreira, F.M. Biological attributes of rehabilitated soils contaminated with heavy metals. Environ. Sci. Pollut. Res. 2016, 23, 6735–6748. [Google Scholar] [CrossRef] [PubMed]
- Nejad, Z.D.; Jung, M.C.; Kim, K.-H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 2018, 40, 927–953. [Google Scholar] [CrossRef]
- Seshadri, B.; Bolan, N.S.; Choppala, G.; Kunhikrishnan, A.; Sanderson, P.; Wang, H.; Currie, L.D.; Tsang, D.C.W.; Ok, Y.S.; Kim, G. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 2017, 184, 197–206. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Zhao, Z.; He, Q.; Wang, S.; Zhu, Y.; Yan, Y.; Liu, X.; Sun, K.; Zhao, Y.; et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 2016, 218, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef]
- Xing, J.; Li, L.; Li, G.; Xu, G. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures. Ecotoxicol. Environ. Saf. 2019, 180, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.Y.; Klaue, B.; Blum, J.D.; Hayes, K.F. Sorption of Mercuric Ion by Synthetic Nanocrystalline Mackinawite (FeS). Environ. Sci. Technol. 2007, 41, 7699–7705. [Google Scholar] [CrossRef] [PubMed]
- Gueye, M.T.; Di Palma, L.; Allahverdeyeva, G.; Bavasso, E.; Stoller, M.; Vilardi, G. The Influence of Heavy Metals and Organic Matter on Hexavalent Chromium Reduction by Nano Zero Valent Iron in Soil. Chem. Eng. Trans. 2019, 47, 289–294. [Google Scholar] [CrossRef]
- Skyllberg, U.; Drott, A. Competition between Disordered Iron Sulfide and Natural Organic Matter Associated Thriols for Mercury(II)—An EXAFS Study. Environ. Sci. Technol. 2010, 44, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, Y.; Wang, J.; Wang, X.; Liu, B.; Wang, Y. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. J. Environmental Management 2019, 231, 679–686. [Google Scholar] [CrossRef]
- Jin, L.N.; Qian, X.Y.; Wang, J.G.; Aslan, H.; Dong, M. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution. J. Colloid Interface Sci. 2015, 453, 270–275. [Google Scholar] [CrossRef]
- Jin, K.; Lee, B.; Park, J. Metal-organic frameworks as a versatile platform for radionuclide management. Coord. Chem. Rev. 2021, 427, 213473. [Google Scholar] [CrossRef]
- Zhang, W.; Tong, L.; Yuan, Y.; Liu, Z.; Huang, H.; Tan, F.; Qiu, R. Influence of soil washing with a chelator on subsequent chemical immobilization of heavy metals in a contaminated soil. J. Hazard. Mater. 2010, 178, 578–587. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Gao, J.; Pierce, E.; Strong, P.J. In situ remediation technologies for mercury-contaminated soil. Environ. Sci. Pollut. Res. 2015, 22, 8124–8147. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Cameselle, C. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; ISBN 978-0-470-38343-8. [Google Scholar]
- Sun, Z.; Wu, B.; Guo, P.; Wang, S.; Guo, S. Enhanced electrokinetic remediation and simulation of cadmium-contaminated soil by superimposed electric field. Chemosphere 2019, 233, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zabochnicka-Świątek, M.; Krzywonos, M. Potentials of Biosorption and Bioaccumulation Processes for Heavy Metal Removal. Pol. J. Environ. Stud. 2014, 23, 551–561. [Google Scholar]
- Velkova, Z.; Kirova, G.; Stoytcheva, M.; Kastadinova, S.; Todorova, K.; Gochev, V. Immobilized microbial biosorbents for heavy metals removal. Eng. Life Sci. 2018, 18, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwaichi, E.O.; Dhankher, O.P. Heavy Metals Contaminated Environments and the Road Map with Phytoremediation. J. Environ. Prot. 2016, 7, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Dumbrava, A.; Birghila, S.; Munteanu, M. Contributions on enhancing the copper uptake by using natural chelators, with applications in soil phytoremediation. Int. J. Environ. Sci. Technol. 2015, 12, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Shackira, A.M.; Puthur, J.T. Phytostabilization of Heavy Metals: Understanding of Principles and Practices. In Plant-Metal Interactions; Srivastava, S., Srivastava, A., Suprasanna, P., Eds.; Springer: Cham, Switzerland, 2016; online; ISBN 9783030207328. [Google Scholar]
- Pérez, A.P.; Sánchez, S.P.; Van Liedekerke, M. Remediation Sites and Brownfields. Success Stories in Europe; EUR 27530 EN; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Kim, B.-K.; Park, G.-Y.; Jeon, E.-K.; Jung, J.-M.; Jung, H.-B.; Ko, S.-H.; Baek, K. Field Application of In Situ Electrokinetic Remediation for As-, Cu-, Pb-Contaminated Paddy Soil. Water Air Soil Pollut. 2013, 224, 1698. [Google Scholar] [CrossRef]
- Geoengineer. Available online: https://www.geoengineer.org (accessed on 2 December 2020).
- Epelde, L.; Burges, A.; Mijangos, I.; Garbisu, C. Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Appl. Soil Ecol. 2014, 75, 1–12. [Google Scholar] [CrossRef]
- Guo, X.; Wei, Z.; Wu, Q.; Li, C.; Qian, T.; Zheng, W. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments. Chemosphere 2016, 147, 412–419. [Google Scholar] [CrossRef]
- Pietrosanti, L.; Pietrini, F.; Zacchini, M.; Matteucci, G.; Massacci, A.; Nardella, A.; Capotorti, G. Phytoremediation of a metal contaminated industrial soil of Porto Marghera by a short rotation forestry stand. In Proceedings of the 11th International Conference on Environmental Science and Technology Chania, Crete, Greece, 3–5 September 2009; pp. B-738–B-744. [Google Scholar]
- Chen, W.; Li, H. Cost-Effectiveness Analysis for Soil Heavy Metal Contamination Treatments. Water Air Soil Pollut. 2018, 229. [Google Scholar] [CrossRef]
Element | Chemical and Physical Properties | Application | World Production (ton·y−1) |
---|---|---|---|
Chromium (Cr) | Density: 7190 kg·m−3 Atomic mass: 51.99 Heat of fusion: 21.00 kJ·mol−1 | Industrial application, alloys, tanning agents, paint pigments, catalysts, photography. | 15,000,000 (year: 2017) |
Copper (Cu) | Density: 8960 kg·m−3 Atomic mass: 63.55 Heat of fusion: 13.26 kJ·mol−1 | Electrical and electronics, transport equipment, construction, industrial machinery, pesticides. | 20,000,000 (year: 2017) |
Zinc (Zn) | Density: 7140 kg·m−3 Atomic mass: 65.38 Heat of fusion: 7.32 kJ·mol−1 | Paints, rubber, cosmetics, pharmaceuticals, plastics, inks, soaps, batteries, textiles, and electrical equipment | 13,500,000 (year: 2019) |
Cadmium (Cd) | Density: 8650 kg·m−3 Atomic mass: 112.41 Heat of fusion: 6.21 kJ·mol−1 | Electroplating, paint pigments, plastics, silver–cadmium batteries, coating operations, machinery and baking enamels, photography, television phosphors. | 24,670 (year: 2019) |
Lead (Pb) | Density: 11,340 kg·m−3 Atomic mass: 207.2 Heat of fusion: 4.77 kJ·mol−1 | Electrical accumulators and batteries, building construction, cable coatings ammunition. | 11,600,000 (year: 2018) |
Mercury (Hg) | Density: 13,530 kg·m−3 Atomic mass: 200.59 Heat of fusion: 2.29 kJ·mol−1 | Dental preparations, thermometers, fluorescent and ultraviolet lamps, pharmaceuticals, fungicides, industrial process waters, seed dressings. | 4000 (year: 2019) |
Arsenic (As) | Density: 5730 kg·m−3 Atomic mass: 74.92 Heat of fusion: 24.44 kJ·mol−1 | Pesticides, pharmaceuticals, alloys, semiconductors. | 33,000 (year: 2019) |
Country/ Organization | Type of Soil | Hg | Cd | Pb | Cr(VI) | Ni | Unit | Ref. |
---|---|---|---|---|---|---|---|---|
WHO | Agricultural soil | 0.08 | 0.003 | 0.1 | 0.1 | 0.05 | ppm | [20] |
China | Agricultural soil | 0.3–1.0 | 0.3–0.6 | 80 | 150–300 | 40–60 | ppm | [20] |
US | Agricultural soil | 1.0 | 0.43 | 200 | 11 | 72 | ppm | [21] |
Italy | Residential soil | 1 | 2 | 100 | 2 | 120 | mg·kg−1 | [22] |
Industrial soil | 5 | 15 | 1000 | 15 | 500 | mg·kg−1 | ||
Finland | Threshold value | 0.5 | 1 | 60 | 100 | 50 | mg·kg−1 | [23] |
Lower guideline value | 2 | 10 | 200 | 200 | 100 | mg·kg−1 | ||
Higher guideline value | 5 | 20 | 750 | 300 | 150 | mg·kg−1 | ||
Canada | Agricultural soil | 0.8 | 3 | 200 | 250 | 100 | mg·kg−1 | [24] |
Germany | Agricultural soil | 5 | 5 | 1000 | 500 | 200 | mg·kg−1 | [2] |
Spain | Soil pH < 7 | 1 | 1 | 50 | 100 | 30 | mg·kg−1 | [25] |
Soil pH > 7 | 1.5 | 3 | 300 | 150 | 112 | mg·kg−1 |
Country | Proximity to Activity Sources | Soil | Element | Concentration (mg·kg−1) | Ref. |
---|---|---|---|---|---|
China (Feng County) | Pb/Zn smelter | A = County Seat (pH 8.5) B = River basin (pH 8.0–8.5) C = Smelter area (pH 8.6) | Cd | A: 6.7 B: 0.8–2.7 C: 57.6 | [31] |
Cu | A: 25.0 B: 21.9–30.2 C: 36.9 | ||||
Ni | A: 46.0 B: 39.4–46.3 C: 49.3 | ||||
Pb | A: 50.0 B: 30.0–70.0 C: 148.0 | ||||
Zn | A: 900.0 B: 300.0–400.0 C: 2079 | ||||
China (Shuozhou) | Pingshuo open pit mine | Cd | 0.117 | [8] | |
Hg | 0.03 | ||||
As | 9.629 | ||||
Pb | 21.328 | ||||
Cr | 55.609 | ||||
China | Pb smelter | Distance from smelter D = 1 km E = 3 km F = 6 km | Cd | D: 4.5 E: 2.0 F: 1.0 | [6] |
Cu | D: 45.0 E: 35.0 F: 32.0 | ||||
Pb | D: 350.0 E: 180.0 F: 175.0 | ||||
Zn | D: 128.0 E: 82.0 F: 80.0 | ||||
China (Changshu City, Jiangsu Province) | Primary, secondary, and tertiary industries | Gleyic clayey paddy soil | Mg | 0.22 | [32] |
K | 1.64 | ||||
V | 82.77 | ||||
Se | 0.12 | ||||
Mn | 347.77 | ||||
Fe | 1.16 | ||||
Co | 12.76 | ||||
Sb | 4.14 | ||||
Pb | 31.41 | ||||
Cu | 31.60 | ||||
Zn | 61.13 | ||||
As | 7.46 | ||||
Cr | 86.38 | ||||
Cd | 0.11 | ||||
Ni | 34.93 | ||||
Pakistan (Swabi) | G = Depth (cm) 0–15 Organic matter (%) 0.35–2.30 pH 7.21–9.21 EC (dS·m−1) 0.13–0.56 CaCO3 (%) 5.89–16.65 H = Depth (cm) 15–30 OMC (%) 0.21–1.52 pH 7.32–8.88 EC (dS·m−1) 0.18–0.86 CaCO3 (%) 6.56–17.81 | Cu | G: 2.33–19.15 H: 1.32–14.11 | [33] | |
Fe | G: 8.23–36.89 H:8.22–30.95 | ||||
Zn | G: 8.26–26.55 H: 7.77–24.20 | ||||
Cd | G: 0.01–0.16 H:0.01–0.08 | ||||
Co | G: 0.8–6.99 H: 0.33–5.46 | ||||
Ni | G: 0.46–22.21 H:0.42–21.9 | ||||
Cr | G: 0.23–8.02 H:0.54–5.11 | ||||
Pb | G: 0.4–2.23 H:0.08–1.99 | ||||
Colombia (Sinú River Basin) | Agricultural soil | Cu | 1149 | [29] | |
Ni | 661 | ||||
Pb | 0.071 | ||||
Cd | 0.040 | ||||
Hg | 0.159 | ||||
Zn | 1365 | ||||
Greece (Argolida) | Agricultural soil | Cu | 28.64 | [34] | |
Pb | 13.96 | ||||
Zn | 45.26 | ||||
Ni | 253.7 | ||||
Co | 25.05 | ||||
Mn | 665 | ||||
As | 5.89 | ||||
Cd | 0.26 | ||||
Cr | 138.4 | ||||
Fe | 2.90 | ||||
P | 0.039 | ||||
K | 0.239 |
Technique | Studies | Maximum Removal | Advantages | Disadvantages | Location |
---|---|---|---|---|---|
Physical processes | |||||
Removal through physical operations | Physical separation [63,64,65,66] Thermal treatment [67,68] Vitrification [69] | 95% | High efficiency Simplicity Rapidity | Cost | A, B, C A, B, C A |
Chemical processes | |||||
Removal through chemical operations | Stabilization [70,71] Treatment with nanoparticles [72,73,74,75,76,77,78,79,80,81] Stabilization/solidification [82] Chemical soil washing [83,84,85] Electrochemical remediation [86,87,88,89,90] | 90% | High efficiency Simplicity Rapidity | Cost Changes in the physicochemical soil properties | A, B, C B, C A B, C A |
Biological processes | |||||
Removal of pollutants by the microbial activity of microorganisms, or plants, or their combination | Biosorption [91,92,93,94,95,96,97,98,99] Bioleaching [100,101] Phytoremediation [102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117] | 96% | Cheapness Ecofriendly Simplicity | Slow High efficiency only with low pollutant concentration | A, B, C B, C A |
Technique | Metals/Metalloids | Size | Location | Year | Ref. |
---|---|---|---|---|---|
Soil replacement | Hg, Cd, Ni, Cu, Cr, Pb, Zn, As, Sb, Ba, Be, Mo, Se | - | Serbia | 2014 | [140] |
Electrokinetic remediation | As, Cu, Pb | 26.25 m3 | Janghang, South Korea | 2013 | [141] |
Electrokinetic remediation | - | 57 m2 | Paducah, Kentucky | 1997 | [142] |
Chemical stabilization | Cd, Pb, Zn | 10 m2 | Biscay, Spain | 2012 | [143] |
Soil washing and phytoremediation | Cd, Zn, Pb, Cu | 64 m2 (8 plots of 8 m2) | Shaoguan, China | 2011 | [144] |
Phytoremediation | Cr, Zn, As, Cd, Pb | 1600 m2 | Taranto, Italy | 2013 | [102] |
Phytoremediation | As, Zn, Pb, Cd | 1000 m2 | Porto Marghera, Italy | 2008 | [145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffa, C.M.; Chiampo, F.; Shanthakumar, S. Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Appl. Sci. 2021, 11, 4134. https://doi.org/10.3390/app11094134
Raffa CM, Chiampo F, Shanthakumar S. Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Applied Sciences. 2021; 11(9):4134. https://doi.org/10.3390/app11094134
Chicago/Turabian StyleRaffa, Carla Maria, Fulvia Chiampo, and Subramanian Shanthakumar. 2021. "Remediation of Metal/Metalloid-Polluted Soils: A Short Review" Applied Sciences 11, no. 9: 4134. https://doi.org/10.3390/app11094134