An Insight into the Efficient Dimethoate Adsorption on Graphene-Based Materials—A Combined Experimental and DFT Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Adsorption Studies
2.3. Apparatus
2.4. Theoretical Calculations
3. Results
3.1. Dimethoate Interaction with IG and GO Surfaces
3.1.1. Hill and Scatchard Analysis
3.1.2. Adsorption Isotherms and Standard Gibbs Free Energy
3.2. DFT Prediction of Dimethoate Adsorption
3.2.1. DMT Adsorption on Pristine Graphene
3.2.2. Adsorption of DMT on Defect Graphene Surfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anićijević, V.; Lazarević-Pašti, T.; Vasić-Anićijević, D.; Karkalić, R. Esters of organophosphorus acids: Toxicity, application and removal from the environment. Sci. Tech. Rev. 2019, 69, 15–29. [Google Scholar] [CrossRef]
- Ali, N.; Kalsoom; Khan, S.; Ihsanullah; Rahman, I.u.; Muhammad, S. Human Health Risk Assessment Through Consumption of Organophosphate Pesticide-Contaminated Water of Peshawar Basin, Pakistan. Expos. Health 2017, 10, 259–272. [Google Scholar] [CrossRef]
- Triassi, M.; Nardone, A.; Giovinetti, M.C.; De Rosa, E.; Canzanella, S.; Sarnacchiaro, P.; Montuori, P. Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Sci. Total Environ. 2019, 678, 741–754. [Google Scholar] [CrossRef]
- Savic, J.Z.; Petrovic, S.; Leskovac, A.R.; Lazarevic-Pasti, T.D.; Nastasijevic, B.J.; Tanovic, B.B.; Gasic, S.M.; Vasic, V.M. UV-C light irradiation enhances toxic effects of chlorpyrifos and its formulations. Food Chem. 2019, 271, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Dyguda-Kazimierowicz, E.; Roszak, S.; Sokalski, W.A. Alkaline hydrolysis of organophosphorus pesticides: The dependence of the reaction mechanism on the incoming group conformation. J. Phys. Chem. B 2014, 118, 7277–7289. [Google Scholar] [CrossRef]
- Murillo, R.; Sarasa, J.; Lanao, M.; Ovelleiro, J.L. Degradation of chlorpyriphos in water by advanced oxidation processes. Water Supply 2010, 10, 1–6. [Google Scholar] [CrossRef]
- Wu, T.; Jans, U. Nucleophilic substitution reactions of chlorpyrifos-methyl with sulfur species. Environ. Sci. Technol. 2006, 40, 784–790. [Google Scholar] [CrossRef]
- Derbalah, A.S.; Nakatani, N.; Sakugawa, H. Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere 2004, 57, 635–644. [Google Scholar] [CrossRef]
- Hirahara, Y.; Ueno, H.; Nakamuro, K. Aqueous photodegradation of fenthion by ultraviolet B irradiation: Contribution of singlet oxygen in photodegradation and photochemical hydrolysis. Water Res. 2003, 37, 468–476. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Appl. Catal. B Environ. 2003, 42, 319–335. [Google Scholar] [CrossRef]
- Wu, J.; Lan, C.; Chan, G.Y.S. Organophosphorus pesticide ozonation and formation of oxon intermediates. Chemosphere 2009, 76, 1308–1314. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Čolović, M.; Savić, J.; Momić, T.; Vasić, V. Oxidation of diazinon and malathion by myeloperoxidase. Pestic. Biochem. Physiol. 2011, 100, 140–144. [Google Scholar] [CrossRef]
- Ragnarsdottir, K.V. Environmental fate and toxicology of organophosphate pesticides. J. Geolog. Soc. 2000, 157, 859–876. [Google Scholar] [CrossRef]
- Raushel, F.M. Bacterial detoxification of organophosphate nerve agents. Curr. Opin. Microbiol. 2002, 5, 288–295. [Google Scholar] [CrossRef]
- Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 2006, 30, 428–471. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, X.; Liu, Z.; Zhang, Y.; Wang, J.; Lin, H.; Xu, D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes@ organic framework ZIF-8. J. Mater. Sci. 2018, 53, 10772–10783. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Bikiaris, D.N.; Mitropoulos, A.C. Graphene composites as dye adsorbents. Chem. Eng. Res. Des. 2018, 129, 75–88. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Lazarevic-Pasti, T.; Anicijevic, V.; Baljozovic, M.; Anicijevic Vasic, D.; Gutic, S.; Vasic, V.; Skorodumova, N.V.; Pasti, I.A. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environ. Sci. Nano. 2018, 5, 1482–1494. [Google Scholar] [CrossRef]
- Araujo, P.T.; Terrones, M.; Dresselhaus, M.S. Defects and impurities in graphene-like materials. Mater. Today 2012, 15, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hu, B.; Gao, Z.; Zhang, F.; Wang, J. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling. J. Mater. Sci. Technol. 2020, 63, 192–202. [Google Scholar] [CrossRef]
- Yadav, S.; Goel, N.; Kumar, V.; Singhal, S. Graphene oxide as proficient adsorbent for the removal of harmful pesticides: Comprehensive experimental cum DFT investigations. Anal. Chem. Lett. 2019, 9, 291–310. [Google Scholar] [CrossRef]
- Vasić Anićijević, D.V. Computational Modelling of Organophosphorus Pesticides—Density Functional Theory Calculations. In Organophosphate Pesticides; Marquis, F., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2020; pp. 75–97. [Google Scholar]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 3039817. [Google Scholar] [CrossRef]
- Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Varga, B.; Juhasz, B.; Tosaki, A. The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact Sci. 2012, 66, 427–438. [Google Scholar] [CrossRef]
- Available online: https://www.acsmaterial.com/graphene-oxide-s-method.html (accessed on 29 September 2020).
- Available online: https://www.acsmaterial.com/single-layer-graphene.html (accessed on 29 September 2020).
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/dimethoate (accessed on 29 September 2020).
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Popelier, P.L.A.; Keith, T.A. Theoretical definition of a functional group and the molecular orbital paradigm. Int. J. Quantum Chem. 1994, 33, 620–631. [Google Scholar] [CrossRef]
- Kokalj, A. XCrySDen—A new program for displaying crystalline structures and electron densities. J. Mol. GraphModell. 1999, 17, 176–179. [Google Scholar] [CrossRef]
- Görner, H.; Chibisov, A.K.; Slavnova, T.D. Kinetics of J-aggregation of cyanine dyes in the presence of gelatin. J. Phys. Chem. B 2006, 110, 3917–3923. [Google Scholar] [CrossRef]
- Laban, B.; Zeković, I.; Vasić Anićijević, D.; Marković, M.; Vodnik, V.; Luce, M.; Cricenti, A.; Dramićanin, M.; Vasić, V. Mechanism of 3,3′-disulfopropyl-5,5′-dichlorothiacyanine anion interaction with citrate-capped silver nanoparticles: Adsorption and J-aggregation. J. Phys. Chem. C 2016, 120, 18066–18074. [Google Scholar] [CrossRef]
- Rasmussen, J.J.; Wiberg-Larsen, P.; Baattrup-Pedersen, A.; Cedergreen, N.; McKnight, U.S.; Kreuger, J.; Jacobsen, D.; Kristensen, E.A.; Friberg, N. The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Res. 2015, 84, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xing, H.; Jiang, Y.; Wu, H.; Sun, G.; Xu, Q.; Xu, S. Accumulation, histopathological effects and response of biochemical markers in the spleens and head kidneys of common carp exposed to atrazine and chlorpyrifos. Food Chem. Toxicol. 2013, 62, 148–158. [Google Scholar] [CrossRef]
- Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourgignon, L.; Ducher, M.; Maire, P. The Hill equation: A review of its capabilities in pharmacological modelling. Fund Clin Pharmacol. 2008, 22, 633–648. [Google Scholar] [CrossRef]
- Colquhoun, D. The quantitative analysis of drug–receptor interactions: A short history. Trends Pharmacol. Sci. 2006, 27, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Scatchard, G. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 1949, 51, 660–672. [Google Scholar] [CrossRef]
- Ghosal, P.; Gupta, A. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 2017, 225, 137–146. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X. The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem. Eng. Commun. 2014, 201, 1459–1467. [Google Scholar] [CrossRef]
- Dubinin, M. The equation of the characteristic curve of activated charcoal. Dokl. Akad. Nauk. SSSR. 1947, 55, 327–329. [Google Scholar]
- Babaeivelni, K.; Khodadoust, A.P. Adsorption of fluoride onto crystalline titanium dioxide: Effect of pH, ionic strength, and co-existing ions. J. Colloid. Interface Sci. 2013, 394, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Radushkevich, L. Potential theory of sorption and structure of carbons. Zhurnal Fiz. Khimii 1949, 23, 1410–1420. [Google Scholar]
- Anićijević, V.J.; Lazarević-Pašti, T.D.; Vasić Anićijević, D.D. Adsorption of dimethoate and sarin on graphene–establishing a DFT model. In Proceedings of the OTEH 2020, Belgrade, Serbia, 15–16 October 2020. [Google Scholar]
- Vasić Anićijević, D.D.; Perović, I.M.; Maslovara, S.L.; Brković, S.M.; Žugić, D.; Laušević, Z.; Marčeta Kaninski, M.J.M.J.o.C.; Engineering, C. Ab Initio Study of Graphene Interaction with O-2, O, and O. Maced. J. Chem. Chem. Eng. 2016, 35, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Anićijević, V.; Jelić, M.; Jovanović, A.; Potkonjak, N.; Pašti, I.; Lazarević-Pašti, T. Organophosphorous pesticide removal from water by graphene-based materials–Only adsorption or something else as well? J. Serb. Chem. Soc. 2021, 1–12. [Google Scholar] [CrossRef]
Adsorption Parameters | IG | GO |
---|---|---|
/mol dm−3 g−1 | (3.16 ± 1.20) × 10−4 | (2.44 ± 1.45) × 10−5 |
/mol dm−3 | (6.78 ± 2.5) × 10−4 | (5.09 ± 3.01) × 10−5 |
/mol−1 dm3 | 1.47 × 103 | 1.96 × 104 |
1.94 ± 0.36 | 1.82 ± 0.25 | |
5.47 × 10−2 | 0.57 | |
0.9994 | 0.9916 |
Adsorption Isotherm Models | Adsorption Isotherm Parameters | IG | GO |
---|---|---|---|
Langmuir | /mol dm−3g−1 | 4.38 × 10−4 | 3.04 × 10−5 |
/dm3mol−1 | (1.3 ± 0.3) × 103 | (5.0 ± 2.3) × 103 | |
0.9895 | 0.9620 | ||
Δ/kJ mol−1 | −27 ± 6 | −31 ± 14 | |
Liu | /mol dm−3g−1 | 6.36 × 10−4 | 2.81 × 10−5 |
/dm3mol−1 | 380 ± 184 | (5.8 ± 0.6) × 103 | |
1.60 ± 0.14 | 0.61 ± 0.05 | ||
0.9993 | 0.9979 | ||
Δ/kJ mol−1 | −24 ± 12 | −31 ± 4 | |
Dubinin–Raduschevich | /mol dm−3g−1 | 8.51 × 10−4 | 5.19 × 10−5 |
/mol2kJ−2 | −4.63 × 10−3 | −3.11 × 10−3 | |
0.9997 | 0.7973 | ||
/kJ mol−1 | 1039 | 1269 |
Orientation | Geometry | CT to DMT (e−) | ||||
---|---|---|---|---|---|---|
Initial | Final | eV | kJ mol−1 | |||
S−binding | 6 × 6 | | | −0.59 | −56.9 | +0.010 |
4 × 4 | | −1.05 | −101.3 | +0.001 | ||
O−binding | 6 × 6 | | | −0.51 | −49.2 | +0.009 |
4 × 4 | | −1.13 | −109.0 | +0.010 |
Surface Model | Geometry | CT to DMT (e−) | ||||
---|---|---|---|---|---|---|
Initial | Optimized | eV | kJ mol−1 | |||
SW-defect | S-binding | | | −0.95 | −91.6 | −0.006 |
O-binding | | | −0.98 | −94.5 | +0.012 | |
oxydefect | S-binding | | | −1.01 | −97.4 | −0.002 |
O-binding | | | −1.12 | −108.0 | +0.010 | |
N-defect | S-binding | | | −1.05 | −101.3 | +0.001 |
O-binding | | | −1.13 | −109.0 | +0.009 | |
MV-defect | S-binding | | | ≈2.43 dissociated | ≈234.4 dissociated | / |
O-binding | | | ≈2.35 dissociated | ≈226.7 dissociated | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anićijević, V.J.; Lazarević-Pašti, T.D.; Vasić, V.M.; Vasić Anićijević, D.D. An Insight into the Efficient Dimethoate Adsorption on Graphene-Based Materials—A Combined Experimental and DFT Study. Appl. Sci. 2021, 11, 4014. https://doi.org/10.3390/app11094014
Anićijević VJ, Lazarević-Pašti TD, Vasić VM, Vasić Anićijević DD. An Insight into the Efficient Dimethoate Adsorption on Graphene-Based Materials—A Combined Experimental and DFT Study. Applied Sciences. 2021; 11(9):4014. https://doi.org/10.3390/app11094014
Chicago/Turabian StyleAnićijević, Vladan J., Tamara D. Lazarević-Pašti, Vesna M. Vasić, and Dragana D. Vasić Anićijević. 2021. "An Insight into the Efficient Dimethoate Adsorption on Graphene-Based Materials—A Combined Experimental and DFT Study" Applied Sciences 11, no. 9: 4014. https://doi.org/10.3390/app11094014
APA StyleAnićijević, V. J., Lazarević-Pašti, T. D., Vasić, V. M., & Vasić Anićijević, D. D. (2021). An Insight into the Efficient Dimethoate Adsorption on Graphene-Based Materials—A Combined Experimental and DFT Study. Applied Sciences, 11(9), 4014. https://doi.org/10.3390/app11094014