Microencapsulation of Peppermint Oil by Complex Coacervation and Subsequent Spray Drying Using Bovine Serum Albumin/Gum Acacia and an Oxidized Starch Crosslinker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Oxidized Starch Crosslinker
2.3. Microencapsulation of Essential oils by Complex Coacervation
2.3.1. Polymer Dissolution
2.3.2. Emulsification
2.3.3. Coacervation
2.3.4. Crosslinking
2.4. Spray Drying
2.5. Extraction of Peppermint Oil
2.6. Characterization
3. Results and Discussion
3.1. Oxidation of Starch Crosslinker
3.2. The Role of pH during Complex Coacervation
3.3. Effect of Spray Drying on Complex Coacervate Microcapsules
3.4. Effect of Polymer:Oil Ratio
3.5. Effect of Crosslinker Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Chawda, P.J.; Shi, J.; Xue, S.; Quek, S.Y. Co-encapsulation of bioactives for food applications. Food Qual. Saf. 2017, 1, 302–309. [Google Scholar] [CrossRef]
- Matthews, R.F.; Braddock, R.J. Recovery and Applications of Essential Oils from Oranges. Food Technol. 1987, 41, 57–61. [Google Scholar]
- Stevanovic, Z.D.; Bosnjak-Neumuller, J.; Pajic-Lijakovic, I.; Raj, J.; Vasiljevic, M. Essential Oils as Feed Additives: Future Perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.J.; Shi, Y.; Han, L.P. Development and evaluation of microencapsulated peony seed oil prepared by spray drying: Oxidative stability and its release behavior during in-vitro digestion. J. Food Eng. 2018, 231, 1–9. [Google Scholar] [CrossRef]
- Dordevic, V.; Balanc, B.; Belscak-Cvitanovic, A.; Levic, S.; Trifkovic, K.; Kalusevic, A.; Kostic, I.; Komes, D.; Bugarski, B.; Nedovic, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Koo, S.Y.; Cha, K.H.; Song, D.G.; Chung, D.; Pan, C.H. Microencapsulation of peppermint oil in an alginate-pectin matrix using a coaxial electrospray system. Int. J. Food Sci. Technol. 2014, 49, 733–739. [Google Scholar] [CrossRef]
- Dong, Z.J.; Ma, Y.; Hayat, K.; Jia, C.S.; Xia, S.Q.; Zhang, X.M. Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. J. Food Eng. 2011, 104, 455–460. [Google Scholar] [CrossRef]
- Irma, K.K.; Qurrota, A.; Hanina, M.; Marsasi, M.R.A. Encapsulation of Peppermint Oil with Carboxymethyl kappa Carrageenan-Gelatine-Chitosan. In International Conference on Condensed Matters and Advanced Materials; Mufti, N., Ed.; IOP: Bristol, UK, 2019; Volume 515. [Google Scholar]
- Muhoza, B.; Xia, S.Q.; Zhang, X.M. Gelatin and high methyl pectin coacervates crosslinked with tannic acid: The characterization, rheological properties, and application for peppermint oil microencapsulation. Food Hydrocoll. 2019, 97, 105174. [Google Scholar] [CrossRef]
- Yilmaztekin, M.; Levic, S.; Kalusevic, A.; Cam, M.; Bugarski, B.; Rakic, V.; Pavlovic, V.; Nedovic, V. Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. J. Microencapsul. 2019, 36, 109–119. [Google Scholar] [CrossRef]
- Kasiri, N.; Fathi, M. Entrapment of peppermint oil using cellulose nanocrystals. Cellulose 2018, 25, 319–329. [Google Scholar] [CrossRef]
- Jiao, X.; Zhao, D.; Zhang, Y.; Wu, Q.; Qiu, G.; Lu, X.H.; Shi, X.D. Synthesis and studies of poly(ethylene glycol dimethacrylate) microcapsule. Colloid Polym. Sci. 2016, 294, 639–646. [Google Scholar] [CrossRef]
- Du, Y.; Mo, L.; Wang, X.; Wang, H.; Ge, X.H.; Qiu, T. Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties. Microfluid. Nanofluid. 2020, 24, 42. [Google Scholar] [CrossRef]
- Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids 2018, 138, 247–258. [Google Scholar] [CrossRef]
- Soh, S.H.; Lee, L.Y. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 2019, 11, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, S.; Harlander, K.R.; Reineccius, G.A. Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour Fragr. J. 2009, 24, 17–24. [Google Scholar] [CrossRef]
- Xiao, Z.B.; Liu, W.L.; Zhu, G.Y.; Zhou, R.J.; Niu, Y.W. Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour Fragr. J. 2014, 29, 166–172. [Google Scholar] [CrossRef]
- de Kruif, C.G.; Weinbreck, F.; de Vries, R. Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 2004, 9, 340–349. [Google Scholar] [CrossRef]
- Lemetter, C.Y.G.; Meeuse, F.M.; Zuidam, N.J. Control of the Morphology and the Size of Complex Coacervate Microcapsules During Scale-up. Aiche J. 2009, 55, 1487–1496. [Google Scholar] [CrossRef]
- Rinaudo, M. Periodate Oxidation of Methylcellulose: Characterization and Properties of Oxidized Derivatives. Polymers 2010, 2, 505–521. [Google Scholar] [CrossRef]
- Burgess, D.J. Practical Analysis of Complex Coacervate Systems. J. Colloid Interface Sci. 1990, 140, 227–238. [Google Scholar] [CrossRef]
- Rojas-Moreno, S.; Cardenas-Bailon, F.; Osorio-Revilla, G.; Gallardo-Velazquez, T.; Proal-Najera, J. Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. J. Food Meas. Charact. 2018, 12, 650–660. [Google Scholar] [CrossRef]
- Weinbreck, F.; de Vries, R.; Schrooyen, P.; de Kruif, C.G. Complex coacervation of whey proteins and gum arabic. Biomacromolecules 2003, 4, 293–303. [Google Scholar] [CrossRef]
- Xiao, J.X.; Yu, H.Y.; Yang, J.A. Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chem. 2011, 125, 1267–1272. [Google Scholar]
- Weinbreck, F.; Minor, M.; De Kruif, C.G. Microencapsulation of oils using whey protein/gum arabic coacervates. J. Microencapsul. 2004, 21, 667–679. [Google Scholar] [CrossRef]
- Dong, Z.H.; Xia, S.Q.; Hua, S.; Hayat, K.; Zhang, X.M.; Xu, S.Y. Optimization of cross-linking parameters during production of transglutaminase-hardened spherical multinuclear microcapsules by complex coacervation. Colloids Surf. B Biointerfaces 2008, 63, 41–47. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; George, S.; Greiner, R.; Estevinho, B.N.; Fernandez, M.J.F.; McClements, D.J.; Roohinejad, S. New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking. Compr. Rev. Food Sci. Food Saf. 2018, 17, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.S.; Grosso, C.R.F. Production of microparticles with gelatin and chitosan. Carbohydr. Polym. 2015, 116, 292–299. [Google Scholar] [CrossRef]
Mean Number Average Diameter | Microencapsulation Yield | ||||||
---|---|---|---|---|---|---|---|
Polymer:Oil (w:w) | [Crosslinker] (wt%) | [Polymer] (wt%) | Coacervates (µm) | After Spray Drying (µm) | SD Yield (%) | CC (%) | SD (%) |
1:2 | 0 | 3 | 7 ± 3 | - | - | - | - |
1:2 | 5 | 3 | 7 ± 3 | 6 ± 3 | 26 | 100 | 17 ± 1 |
1:1 | 5 | 3 | 7 ± 3 | 7 ± 3 | 21 | 100 | 19 ± 1 |
1:1 | 5 | 6 | 7 ± 4 | 6 ± 4 | 32 | 100 | 27 ± 3 |
2:1 | 2.5 | 6 | 7 ± 4 | 6 ± 3 | 29 | 100 | 54 ± 2 |
2:1 | 5 | 6 | 5 ± 3 | 6 ± 3 | 31 | 100 | 47 ± 1 |
2:1 | 10 | 6 | 22 ± 4 | 27 ± 4 | 35 | 100 | 31 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glomm, W.R.; Molesworth, P.P.; Sandru, E.M.; Truong, L.T.; Brunsvik, A.; Johnsen, H. Microencapsulation of Peppermint Oil by Complex Coacervation and Subsequent Spray Drying Using Bovine Serum Albumin/Gum Acacia and an Oxidized Starch Crosslinker. Appl. Sci. 2021, 11, 3956. https://doi.org/10.3390/app11093956
Glomm WR, Molesworth PP, Sandru EM, Truong LT, Brunsvik A, Johnsen H. Microencapsulation of Peppermint Oil by Complex Coacervation and Subsequent Spray Drying Using Bovine Serum Albumin/Gum Acacia and an Oxidized Starch Crosslinker. Applied Sciences. 2021; 11(9):3956. https://doi.org/10.3390/app11093956
Chicago/Turabian StyleGlomm, Wilhelm Robert, Peter Patrick Molesworth, Eugenia Mariana Sandru, Le Thuy Truong, Anders Brunsvik, and Heidi Johnsen. 2021. "Microencapsulation of Peppermint Oil by Complex Coacervation and Subsequent Spray Drying Using Bovine Serum Albumin/Gum Acacia and an Oxidized Starch Crosslinker" Applied Sciences 11, no. 9: 3956. https://doi.org/10.3390/app11093956
APA StyleGlomm, W. R., Molesworth, P. P., Sandru, E. M., Truong, L. T., Brunsvik, A., & Johnsen, H. (2021). Microencapsulation of Peppermint Oil by Complex Coacervation and Subsequent Spray Drying Using Bovine Serum Albumin/Gum Acacia and an Oxidized Starch Crosslinker. Applied Sciences, 11(9), 3956. https://doi.org/10.3390/app11093956