Chromosome Walking: A Novel Approach to Analyse Amino Acid Content of Human Proteins Ordered by Gene Position
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Building a Novel Dataset: The Ordering Procedure
2.2. Implementation: A Web Application
2.3. Validation
3. Results
3.1. One Application of the Novel Dataset Obtained in Canonical Table: The Walking Procedure
3.2. The Surfing Analysis
3.3. A Case Study on Chromosome 15
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osbourn, A. Secondary Metabolic Gene Clusters: Evolutionary Toolkits for Chemical Innovation. Trends Genet. 2010, 26, 449–457. [Google Scholar] [CrossRef]
- Osbourn, A.E.; Field, B. Operons. Cell. Mol. Life Sci. 2009, 66, 3755–3775. [Google Scholar] [CrossRef] [Green Version]
- Hurst, L.D.; Pál, C.; Lercher, M.J. The Evolutionary Dynamics of Eukaryotic Gene Order. Nat. Rev. Genet. 2004, 5, 299–310. [Google Scholar] [CrossRef]
- Charles, B.A.; Shriner, D.; Rotimi, C.N. Accounting for Linkage Disequilibrium in Association Analysis of Diverse Populations. Genet. Epidemiol. 2014, 38, 265–273. [Google Scholar] [CrossRef]
- Hamdi, Y.; Soucy, P.; Adoue, V.; Michailidou, K.; Canisius, S.; Lemaçon, A.; Droit, A.; Andrulis, I.L.; Anton-Culver, H.; Arndt, V.; et al. Association of Breast Cancer Risk with Genetic Variants Showing Differential Allelic Expression: Identification of a Novel Breast Cancer Susceptibility Locus at 4q21. Oncotarget 2016, 7, 80140–80163. [Google Scholar] [CrossRef] [Green Version]
- Eicher, J.D.; Powers, N.R.; Miller, L.L.; Mueller, K.L.; Mascheretti, S.; Marino, C.; Willcutt, E.G.; DeFries, J.C.; Olson, R.K.; Smith, S.D.; et al. Characterization of the DYX2 Locus on Chromosome 6p22 with Reading Disability, Language Impairment, and IQ. Hum. Genet. 2014, 133, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Deffenbacher, K.E.; Kenyon, J.B.; Hoover, D.M.; Olson, R.K.; Pennington, B.F.; DeFries, J.C.; Smith, S.D. Refinement of the 6p21.3 Quantitative Trait Locus Influencing Dyslexia: Linkage and Association Analyses. Hum. Genet. 2004, 115, 128–138. [Google Scholar] [CrossRef]
- Vernone, A.; Ricca, C.; Merlo, D.; Pescarmona, G.; Silvagno, F. The Analysis of Glutamate and Glutamine Frequencies in Human Proteins as Marker of Tissue Oxygenation. R. Soc. Open Sci. 2019, 6, 181891. [Google Scholar] [CrossRef] [Green Version]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, F.; Achuthan, P.; Akanni, W.; Allen, J.; Amode, M.R.; Armean, I.M.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; et al. Ensembl 2019. Nucleic Acids Res. 2019, 47, D745–D751. [Google Scholar] [CrossRef] [Green Version]
- Lebel, C.; MacMaster, F.P.; Dewey, D. Brain Metabolite Levels and Language Abilities in Preschool Children. Brain Behav. 2016, 6, e00547. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Vasconcelos, M.; Oliveira, V.; Santos, F.C.D.; Bizarro, L.; Almeida, R.M.M.D.; Salles, J.F.D.; Carvalho, M.R.S. Genetic and Environmental Risk Factors for Developmental Dyslexia in Children: Systematic Review of the Last Decade. Dev. Neuropsychol. 2017, 42, 423–445. [Google Scholar] [CrossRef]
- Peterson, R.L.; Pennington, B.F. Developmental Dyslexia. Annu. Rev. Clin. Psychol. 2015, 11, 283–307. [Google Scholar] [CrossRef]
- Murphy, E.; Benítez-Burraco, A. Toward the Language Oscillogenome. Front. Psychol. 2018, 9, 1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthoni, H.; Sucheston, L.E.; Lewis, B.A.; Tapia-Páez, I.; Fan, X.; Zucchelli, M.; Taipale, M.; Stein, C.M.; Hokkanen, M.-E.; Castrén, E.; et al. The Aromatase Gene CYP19A1: Several Genetic and Functional Lines of Evidence Supporting a Role in Reading, Speech and Language. Behav. Genet. 2012, 42, 509–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsson, H.; Huss, M.; Persson, H.; Einarsdottir, E.; Tiraboschi, E.; Nopola-Hemmi, J.; Schumacher, J.; Neuhoff, N.; Warnke, A.; Lyytinen, H.; et al. Polymorphisms in DCDC2 and S100B Associate with Developmental Dyslexia. J. Hum. Genet. 2015, 60, 399–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascheretti, S.; Facoetti, A.; Giorda, R.; Beri, S.; Riva, V.; Trezzi, V.; Cellino, M.R.; Marino, C. GRIN2B Mediates Susceptibility to Intelligence Quotient and Cognitive Impairments in Developmental Dyslexia. Psychiatr. Genet. 2015, 25, 9–20. [Google Scholar] [CrossRef]
- Mascheretti, S.; De Luca, A.; Trezzi, V.; Peruzzo, D.; Nordio, A.; Marino, C.; Arrigoni, F. Neurogenetics of Developmental Dyslexia: From Genes to Behavior through Brain Neuroimaging and Cognitive and Sensorial Mechanisms. Transl. Psychiatry 2017, 7, e987. [Google Scholar] [CrossRef] [Green Version]
- Fagerheim, T.; Raeymaekers, P.; Tønnessen, F.E.; Pedersen, M.; Tranebjaerg, L.; Lubs, H.A. A New Gene (DYX3) for Dyslexia Is Located on Chromosome 2. J. Med. Genet. 1999, 36, 664–669. [Google Scholar]
- Buonincontri, R.; Bache, I.; Silahtaroglu, A.; Elbro, C.; Nielsen, A.-M.V.; Ullmann, R.; Arkesteijn, G.; Tommerup, N. A Cohort of Balanced Reciprocal Translocations Associated with Dyslexia: Identification of Two Putative Candidate Genes at DYX1. Behav. Genet. 2011, 41, 125–133. [Google Scholar] [CrossRef]
- Hannula-Jouppi, K.; Kaminen-Ahola, N.; Taipale, M.; Eklund, R.; Nopola-Hemmi, J.; Kääriäinen, H.; Kere, J. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia. PLoS Genet. 2005, 1, e50. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, L.; Bolleman, J.; Gehant, S.; Redaschi, N.; Martin, M.; UniProt Consortium. FAIR Adoption, Assessment and Challenges at UniProt. Sci. Data 2019, 6, 175. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef]
- Muhle, R.; Trentacoste, S.V.; Rapin, I. The Genetics of Autism. Pediatrics 2004, 113, e472–e486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J.; Bansal, R.; Goh, S.; Rodie, M.; Sawardekar, S.; Peterson, B.S. Parsing the Heterogeneity of Brain Metabolic Disturbances in Autistic Spectrum Disorder. Biol. Psychiatry 2020, 87, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Cochran, D.M.; Sikoglu, E.M.; Hodge, S.M.; Edden, R.A.E.; Foley, A.; Kennedy, D.N.; Moore, C.M.; Frazier, J.A. Relationship among Glutamine, γ-Aminobutyric Acid, and Social Cognition in Autism Spectrum Disorders. J. Child Adolesc. Psychopharmacol. 2015, 25, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Fluegge, K. Impaired Amino Acid Metabolism in Autism Spectrum Disorders. Biomark. Med. 2017, 11, 711–712. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Qian-Qian, L.; Cong, Y.; Xiao-Bing, Z.; Hong-Zhu, D. Reduction of Essential Amino Acid Levels and Sex-Specific Alterations in Serum Amino Acid Concentration Profiles in Children with Autism Spectrum Disorder. Psychiatry Res. 2021, 297, 113675. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Scherer, S.W. Identification of Candidate Intergenic Risk Loci in Autism Spectrum Disorder. BMC Genom. 2013, 14, 499. [Google Scholar] [CrossRef] [Green Version]
- Szatmari, P.; Paterson, A.; Zwaigenbaum, L.; Roberts, W.; Brian, J.; Liu, X.-Q.; Vincent, J.; Skaug, J.; Thompson, A.; Senman, L.; et al. Mapping Autism Risk Loci Using Genetic Linkage and Chromosomal Rearrangements. Nat. Genet. 2007, 39, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Yao, X.; March, M.E.; Meng, X.; Li, J.; Wei, Z.; Sleiman, P.M.A.; Hakonarson, H.; Xia, Q.; Li, J. Target Genes of Autism Risk Loci in Brain Frontal Cortex. Front. Genet. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Sabbía, V.; Piovani, R.; Naya, H.; Rodríguez-Maseda, H.; Romero, H.; Musto, H. Trends of Amino Acid Usage in the Proteins from the Human Genome. J. Biomol. Struct. Dyn. 2007, 25, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Vernone, A.; Silvagno, F. Chromosome Walking. Zenodo 2020. [Google Scholar] [CrossRef]
Chromosome | Number of Sequences | Error Rate | |
---|---|---|---|
UniProt | Canonical Table | ||
1 | 1982 | 1929 | 0.0267 ~ 3% |
14 | 700 | 658 | 0.0600 ~ 6% |
15 | 567 | 552 | 0.0264 ~ 3% |
21 | 221 | 211 | 0.0264 ~ 4% |
Gene (Symbol) | ID Protein | Length | E | Q | E% | Q% | Cyto | References |
---|---|---|---|---|---|---|---|---|
CYP19A1 | CP19A_HUMAN | 503 | 38 | 11 | 0.08 | 0.02 | 15q21.2 | [14,15,16] |
DCDC2 | DCDC2_HUMAN | 476 | 50 | 28 | 0.1 | 0.06 | 6p22 | [13,14,16,17,18] |
DYX1C1 | DAAF4_HUMAN | 420 | 49 | 18 | 0.12 | 0.04 | 15q21.1 | [13,15,16,17,18] |
CFAP36 | CFA36_HUMAN | 342 | 56 | 21 | 0.16 | 0.06 | 2 | [19] |
S100B | S100B_HUMAN | 92 | 16 | 3 | 0.17 | 0.03 | 21 | [14,16,18] |
MRPL19 | RM19_HUMAN | 292 | 23 | 16 | 0.08 | 0.05 | 2p12 | [13,16,18] |
GCFC2 | GCFC2_HUMAN | 781 | 79 | 45 | 0.1 | 0.06 | 2 | [16] |
FOXP2 | FOXP2_HUMAN | 715 | 41 | 127 | 0.06 | 0.18 | 7q31.1 | [13,14,18] |
ZNF280D | Z280D_HUMAN | 979 | 73 | 40 | 0.08 | 0.04 | 15q21.3 | [20] |
SLITRK2 | SLIK2_HUMAN | 845 | 49 | 40 | 0.06 | 0.05 | Xq27.3 | [21] |
Median | 49 | 21 | 0.08 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernone, A.; Ricca, C.; Pescarmona, G.; Silvagno, F. Chromosome Walking: A Novel Approach to Analyse Amino Acid Content of Human Proteins Ordered by Gene Position. Appl. Sci. 2021, 11, 3511. https://doi.org/10.3390/app11083511
Vernone A, Ricca C, Pescarmona G, Silvagno F. Chromosome Walking: A Novel Approach to Analyse Amino Acid Content of Human Proteins Ordered by Gene Position. Applied Sciences. 2021; 11(8):3511. https://doi.org/10.3390/app11083511
Chicago/Turabian StyleVernone, Annamaria, Chiara Ricca, Gianpiero Pescarmona, and Francesca Silvagno. 2021. "Chromosome Walking: A Novel Approach to Analyse Amino Acid Content of Human Proteins Ordered by Gene Position" Applied Sciences 11, no. 8: 3511. https://doi.org/10.3390/app11083511
APA StyleVernone, A., Ricca, C., Pescarmona, G., & Silvagno, F. (2021). Chromosome Walking: A Novel Approach to Analyse Amino Acid Content of Human Proteins Ordered by Gene Position. Applied Sciences, 11(8), 3511. https://doi.org/10.3390/app11083511