Tensile Test of Human Lumbar Ligamentum Flavum: Age-Related Changes of Stiffness
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nachemson, A.L.; Evans, J.H. Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J. Biomech. 1968, 1, 211–220. [Google Scholar] [CrossRef]
- Nachemson, A.; Lewin, T.; Maroudas, A.; Freeman, M.A. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop. Scand. 1970, 41, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Trigg, S.D.; Devilbiss, Z. Spine Conditions: Lumbar Spinal Stenosis. FP Essent. 2017, 461, 21–25. [Google Scholar] [PubMed]
- Lee, J.Y.; Whang, P.G.; Lee, J.Y.; Phillips, F.M.; Patel, A.A. Lumbar spinal stenosis. Instr. Course Lect. 2013, 62, 383–396. [Google Scholar]
- Yabe, Y.; Hagiwara, Y.; Ando, A.; Tsuchiya, M.; Minowa, T.; Takemura, T.; Honda, M.; Hatori, K.; Sonofuchi, K.; Kanazawa, K.; et al. Chondrogenic and fibrotic process in the ligamentum flavum of patients with lumbar spinal canal stenosis. Spine 2015, 40, 429–435. [Google Scholar] [CrossRef]
- Poletti, C.E. Central lumbar stenosis caused by ligamentum flavum: Unilateral laminotomy for bilateral ligamentectomy: Preliminary report of two cases. Neurosurgery 1995, 37, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, H.; Wang, X.; Liu, X. Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J. 2020, 34, 9854–9868. [Google Scholar] [CrossRef]
- Yong-Hing, K.; Reilly, J.; Kirkaldy-Willis, W.H. The ligamentum flavum. Spine 1976, 1, 226–234. [Google Scholar] [CrossRef]
- Yayama, T.; Baba, H.; Furusawa, N.; Kobayashi, S.; Uchida, K.; Kokubo, Y.; Noriki, S.; Imamura, Y.; Fukuda, M. Pathogenesis of calcium crystal deposition in the ligamentum flavum correlates with lumbar spinal canal stenosis. Clin. Exp. Rheumatol. 2005, 23, 637–643. [Google Scholar] [PubMed]
- Schräder, P.K.; Grob, D.; Rahn, B.A.; Cordey, J.; Dvorak, J. Histology of the ligamentum flavum in patients with degenerative lumbar spinal stenosis. Eur. Spine J. 1999, 8, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Shima, K.; Taniguchi, Y.; Tamaki, T.; Tanaka, T. Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation. Spine 1992, 17, 1353–1360. [Google Scholar] [CrossRef]
- Zhong, Z.M.; Zha, D.S.; Xiao, W.D.; Wu, S.H.; Wu, Q.; Zhang, Y.; Liu, F.Q.; Chen, J.T. Hypertrophy of ligamentum flavum in lumbar spine stenosis associated with the increased expression of connective tissue growth factor. J. Orthop. Res. 2011, 29, 1592–1597. [Google Scholar] [CrossRef]
- Okuda, T.; Baba, I.; Fujimoto, Y.; Tanaka, N.; Sumida, T.; Manabe, H.; Hayashi, Y.; Ochi, M. The pathology of ligamentum flavum in degenerative lumbar disease. Spine 2004, 29, 1689–1697. [Google Scholar] [CrossRef]
- Hur, J.W.; Kim, B.J.; Park, J.H.; Kim, J.H.; Park, Y.K.; Kwon, T.H.; Moon, H.J. The mechanism of ligamentum flavum hypertrophy: Introducing angiogenesis as a critical link that couples mechanical stress and hypertrophy. Neurosurgery 2015, 77, 274–282. [Google Scholar] [CrossRef] [PubMed]
- L€ohr, M.; Hampl, A.J.; Lee, J.Y.; Ernestus, R.I.; Deckert, M.; Stenzel, W. Hypertrophy of the lumbar ligamentum flavum is associated with inflamation-related TGF-beta expression. Acta Neurochir. 2011, 153, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Tkaczuk, H. Tensile properties of human lumbar longitudinal ligaments. Acta Orthop. Scand. 1968, 39 (Suppl. 115), 1–69. [Google Scholar] [CrossRef] [PubMed]
- Jezek, J.; Sepitka, J.; Daniel, M.; Kujal, P.; Blankova, A.; Waldauf, P.; Krbec, M.; Dousa, P.; Skala-Rosenbaum, J.; Samal, F.; et al. The role of vascularization on changes in ligamentum flavum mechanical properties and development of hypertrophy in patients with lumbar spinal stenosis. Spine J. 2020, 20, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.C.; Tsai, K.L.; Tsai, K.J.; Tu, T.Y.; Shyong, Y.J.; Jou, I.M.; Hsu, C.C.; Shih, S.S.; Liu, Y.F.; Lin, C.L. Oxidative stress mediates age-related hypertrophy of ligamentum flavum by inducing inflammation, fibrosis, and apoptosis through activating Akt and MAPK pathways. Aging 2020, 12, 24168–24183. [Google Scholar] [CrossRef]
- Abbas, J.; Hamoud, K.; Masharawi, Y.M.; May, H.; Hay, O.; Medlej, B.; Peled, N.; Hershkovitz, I. Ligamentum flavum thickness in normal and stenotic lumbar spines. Spine 2010, 35, 1225–1230. [Google Scholar] [CrossRef]
- Safak, A.A.; Is, M.; Sevinc, O.; Barut, C.; Eryoruk, N.; Erdogmus, B.; Dosoglu, M. The thickness of the ligamentum flavum in relation to age and gender. Clin. Anat. 2010, 23, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.U.; Park, J.Y.; Kim, D.H.; Karm, M.H.; Lee, J.Y.; Yoo, J.I.; Chon, S.W.; Suh, J.H. The Role of the Ligamentum Flavum Area as a Morphological Parameter of Lumbar Central Spinal Stenosis. Pain Physician 2017, 20, E419–E424. [Google Scholar]
- Sairyo, K.; Biyani, A.; Goel, V.; Leaman, D.; Booth, R., Jr.; Thomas, J.; Gehling, D.; Vishnubhotla, L.; Long, R.; Ebraheim, N. Pathomechanism of ligamentum flavum hypertrophy: A multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments. Spine 2005, 30, 2649–2656. [Google Scholar] [CrossRef]
- Myklebust, J.B.; Pintar, F.; Yoganandan, N.; Cusick, J.F.; Maiman, D.; Myers, T.J.; Sances, A., Jr. Tensile strength of spinal ligaments. Spine 1988, 13, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Pintar, F.A.; Yoganandan, N.; Myers, T.; Elhagediab, A.; Sances, A., Jr. Biomechanical properties of human lumbar spine ligaments. J. Biomech. 1992, 25, 1351–1356. [Google Scholar] [CrossRef]
- Chazal, J.; Tanguy, A.; Bourges, M.; Gaurel, G.; Escande, G.; Guillot, M.; Vanneuville, G. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J. Biomech. 1985, 18, 167–176. [Google Scholar] [CrossRef]
- Dumas, G.A.; Beaudoin, L.; Drouin, G. In situ mechanical behavior of posterior spinal ligaments in the lumbar region. An in vitro study. J. Biomech. 1987, 20, 301–310. [Google Scholar] [CrossRef]
- Nishida, N.; Kanchiku, T.; Kato, Y.; Imajo, Y.; Suzuki, H.; Yoshida, Y.; Ohgi, J.; Chen, X.; Taguchi, T. Cervical ossification of the posterior longitudinal ligament: Factors affecting the effect of posterior decompression. J. Spinal Cord Med. 2017, 40, 93–99. [Google Scholar] [CrossRef]
- Okazaki, T.; Kanchiku, T.; Nishida, N.; Ichihara, K.; Sakuramoto, I.; Ohgi, J.; Funaba, M.; Imajo, Y.; Suzuki, H.; Chen, X.; et al. Age-related changes of the spinal cord: A biomechanical study. Exp. Ther. Med. 2018, 15, 2824–2829. [Google Scholar] [CrossRef]
Age | Gender 1 | Disease 2 | Stiffness Mean ± STD (MPa) |
---|---|---|---|
33 | F | Schwannoma | 2.951 ± 0 |
36 | F | LDH | 2.545 ± 0 |
37 | M | LDH | 2.470 ± 0.917 |
41 | M | LDH | 2.656 ± 0 |
42 | M | LSS | 2.803 ± 0.582 |
51 | M | LDH | 3.198 ± 0.471 |
51 | F | LDH | 3.501 ± 0.865 |
53 | M | LSS | 3.518 ± 0 |
56 | F | LSS | 4.310 ± 0.403 |
60 | M | LDH | 2.826 ± 0.172 |
60 | M | LDH | 3.894 ± 0.429 |
60 | F | LSS | 3.341 ± 1.150 |
61 | M | LSS | 3.177 ± 0 |
62 | M | LSS | 3.769 ± 0.762 |
65 | M | LSS | 2.982 ± 0.440 |
65 | M | LSS | 3.557 ± 0 |
65 | F | LSS | 4.831 ± 0.533 |
66 | M | LDH | 2.832 ± 0.947 |
67 | M | LSS | 6.592 ± 0.543 |
68 | F | LDH | 3.475 ± 0.549 |
68 | F | LSS | 4.081 ± 0 |
69 | F | LDH | 2.662 ± 0.746 |
70 | F | LSS | 4.632 ± 0.984 |
71 | M | LSS | 6.849 ± 0 |
73 | F | LDH | 4.047 ± 0.993 |
73 | F | LSS | 7.538 ± 0.572 |
74 | F | LDH | 9.892 ± 2.527 |
74 | M | LSS | 4.309 ± 0.523 |
74 | F | LSS | 4.510 ± 0.386 |
75 | F | Schwannoma | 5.490 ± 0.661 |
76 | F | LSS | 4.656 ± 1.211 |
76 | F | LSS | 5.141 ± 0.025 |
77 | F | LSS | 4.889 ± 1.032 |
77 | M | LSS | 4.150 ± 0.776 |
77 | F | LSS | 2.314 ± 0.669 |
78 | M | LSS | 4.470 ± 1.940 |
78 | M | LSS | 7.063 ± 0 |
79 | F | LSS | 3.260 ± 0.670 |
79 | F | LSS | 5.581 ± 0.852 |
79 | M | LSS | 3.427 ± 0.754 |
81 | M | LSS | 6.749 ± 0 |
82 | M | LSS | 6.773 ± 0 |
83 | M | LSS | 4.832 ± 1.020 |
85 | M | LSS | 5.223 ± 0.975 |
Variable | stdβ | p-Value |
---|---|---|
Age | 0.5731 | 0.0004 |
Gender | −0.0374 | n.s. |
LSS 1 | 0.1108 | n.s. |
Non-LSS 1 | 0.1203 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihara, A.; Nishida, N.; Jiang, F.; Ohgi, J.; Imajo, Y.; Suzuki, H.; Funaba, M.; Yamagata, H.; Chen, X.; Sakai, T. Tensile Test of Human Lumbar Ligamentum Flavum: Age-Related Changes of Stiffness. Appl. Sci. 2021, 11, 3337. https://doi.org/10.3390/app11083337
Mihara A, Nishida N, Jiang F, Ohgi J, Imajo Y, Suzuki H, Funaba M, Yamagata H, Chen X, Sakai T. Tensile Test of Human Lumbar Ligamentum Flavum: Age-Related Changes of Stiffness. Applied Sciences. 2021; 11(8):3337. https://doi.org/10.3390/app11083337
Chicago/Turabian StyleMihara, Atsushi, Norihiro Nishida, Fei Jiang, Junji Ohgi, Yasuaki Imajo, Hidenori Suzuki, Masahiro Funaba, Hiroki Yamagata, Xian Chen, and Takashi Sakai. 2021. "Tensile Test of Human Lumbar Ligamentum Flavum: Age-Related Changes of Stiffness" Applied Sciences 11, no. 8: 3337. https://doi.org/10.3390/app11083337
APA StyleMihara, A., Nishida, N., Jiang, F., Ohgi, J., Imajo, Y., Suzuki, H., Funaba, M., Yamagata, H., Chen, X., & Sakai, T. (2021). Tensile Test of Human Lumbar Ligamentum Flavum: Age-Related Changes of Stiffness. Applied Sciences, 11(8), 3337. https://doi.org/10.3390/app11083337