Accurate Simulation of Light Propagation in Complex Skin Tissues Using an Improved Tetrahedron-Based Monte Carlo Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photon–Surface Interaction in TMCE
2.2. Boundary Conditions
2.3. Validation of TMCE
3. Results
3.1. Parallel Blood Vessels
3.2. Cross-Bridge Blood Vessels
3.2.1. Cross Angle
3.2.2. Vessel Distance
3.2.3. Shape of Vessel Cross Section
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucassen, G.W.; Verkruysse, W.; Keijzer, M.; Gemert, M.J.V. Light distributions in a port wine stain model containing multiple cylindrical and curved blood vessels. Lasers Surg. Med. 1996, 18, 345–357. [Google Scholar] [CrossRef]
- Fang, Q. Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomed. Opt. Express 2010, 1, 165–175. [Google Scholar] [CrossRef]
- Anderson, R.R.; Parrish, J.A. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation. Science 1983, 220, 524–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillermo, A.; Bernard, C.; Mans, B.; Yang, O.; Yang, B.; Pedram, G.; Chen, J.K.; Rick, B.; Stuart, N.J.; Margreet, V.D.A. An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains. Ann. Biomed. Eng. 2012, 40, 486–506. [Google Scholar]
- Li, D.; Farshidi, D.; Wang, G.X.; He, Y.L.; Kelly, K.M.; Wu, W.J.; Chen, B.; Ying, Z.X. A comparison of microvascular responses to visible and near-infrared lasers. Lasers Surg. Med. 2014, 46, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonya-Ananta, T.; Rodriguez, A.J.; Ajmal, A.; Le, V.N.D.; Hansen, A.K.; Hutcheson, J.D.; Ramella-Roman, J.C. Synthetic photoplethysmography (PPG) of the radial artery through parallelized Monte Carlo and its correlation to body mass index (BMI). Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Binzoni, T.; Leung, T.S.; Giust, R.; Fenacht, D.; Gandjbakhche, A.H. Light transport in tissue by 3D Monte Carlo: Influence of boundary voxelization. Comput. Methods Programs Biomed. 2008, 89, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, B.; Wu, W.J.; Wang, G.X.; He, Y.L.; Ying, Z.X. Experimental study on the vascular thermal response to visible laser pulses. Lasers Med. Sci. 2015, 30, 35–145. [Google Scholar] [CrossRef]
- Wang, L.; Jacques, S.L.; Zheng, L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed. 1995, 47, 131. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Li, D.; Wang, X.G. Efficient and Accurate Simulation of Light Propagation in Bio-Tissues Using the Three-Dimensional Geometric Monte Carlo Method. Numerical Heat Transf. 2015, 68, 827–846. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J. Numerical study on 3-d light and heat transport in biological tissues embedded with large blood vessels during laser-induced thermotherapy. Numerical Heat Transf. 2004, 45, 415–449. [Google Scholar] [CrossRef]
- Dunn, A.K.; Boas, D.A.; Stott, J.J.; Culver, J.P. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt. Express 2002, 10, 159–170. [Google Scholar]
- Fang, Q.; Boas, D.A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 2009, 17, 20178–20190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doronin, A.; Meglinski, I. Online object oriented Monte Carlo computational tool for the needs of biomedical optics. Biomed. Opt. Express 2011, 2, 2461–2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dremin, V.; Zherebtsov, E.; Bykov, A.; Popov, A.; Doronin, A.; Meglinski, I. Influence of blood pulsation on diagnostic volume in pulse oximetry and photoplethysmography measurements. Appl. Opt. 2019, 58, 9398–9405. [Google Scholar] [CrossRef] [PubMed]
- Premru, J.; Milanič, M.; Majaron, B. Monte Carlo simulation of radiation transfer in human skin with geometrically correct treatment of boundaries between different tissues. Proc. SPIE Int. Soc. Opt. Eng. 2013, 8579, 85790Z. [Google Scholar]
- Shen, H.; Wang, G. A tetrahedron-based inhomogeneous Monte Carlo optical simulator. Phys. Med. Biol. 2010, 55, 947–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, H.; Chen, B.; Li, D.; Zhang, Y. Boundary discretization in the numerical simulation of light propagation in skin tissue: Problem and strategy. J. Biomed. Opt. 2015, 20, 25007. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xue, C.; Wang, P.; Li, Y.; Wu, L. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study. J. Innov. Opt. Health Sci. 2017, 10, 1743002. [Google Scholar] [CrossRef] [Green Version]
- Milanic, M.; Majaron, B. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions. J. Biomed. Opt. 2011, 16, 128002. [Google Scholar] [CrossRef] [PubMed]
GS/μm | Hcshad = 150 μm | Hcshad = 250 μm | Hcshad = 350 μm | Hcshad = 450 μm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WS | OS | Ratio | WS | OS | Ratio | WS | OS | Ratio | WS | OS | Ratio | |
80 | ----- | ----- | ----- | 87 | 123 | 71% | 69 | 99 | 70% | 53 | 78 | 68% |
120 | 99 | 136 | 73% | 75 | 107 | 70% | 57 | 85 | 67% | 44 | 67 | 66% |
160 | 90 | 127 | 71% | 67 | 99 | 68% | 53 | 80 | 66% | 43 | 64 | 67% |
200 | 81 | 118 | 69% | 62 | 95 | 65% | 49 | 77 | 64% | 41 | 60 | 68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Chen, B.; Li, D. Accurate Simulation of Light Propagation in Complex Skin Tissues Using an Improved Tetrahedron-Based Monte Carlo Method. Appl. Sci. 2021, 11, 2998. https://doi.org/10.3390/app11072998
Jia H, Chen B, Li D. Accurate Simulation of Light Propagation in Complex Skin Tissues Using an Improved Tetrahedron-Based Monte Carlo Method. Applied Sciences. 2021; 11(7):2998. https://doi.org/10.3390/app11072998
Chicago/Turabian StyleJia, Hao, Bin Chen, and Dong Li. 2021. "Accurate Simulation of Light Propagation in Complex Skin Tissues Using an Improved Tetrahedron-Based Monte Carlo Method" Applied Sciences 11, no. 7: 2998. https://doi.org/10.3390/app11072998
APA StyleJia, H., Chen, B., & Li, D. (2021). Accurate Simulation of Light Propagation in Complex Skin Tissues Using an Improved Tetrahedron-Based Monte Carlo Method. Applied Sciences, 11(7), 2998. https://doi.org/10.3390/app11072998