Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator
Abstract
:1. Introduction
2. Experimental Setup and Experimental Results
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, K.; Yu, C.; Liu, J.; Wang, W.; Tian, Y.; Zhang, Z.; Qi, R.; Fang, M.; Liu, J.; Qin, Z.; et al. Coherent X-ray source generation with off-resonance laser modulation. Opt. Express 2018, 26, 19067–19079. [Google Scholar] [CrossRef]
- Allaria, E.; Castronovo, D.; Cinquegrana, P.; Craievich, P.; Dal Forno, M.; Danailov, M.B.; D’Auria, G.; Demidovich, A.; De Ninno, G.; Di Mitri, S.; et al. Two-stage seeded soft-X-ray free-electron laser. Nat. Photonics 2013, 7, 913–918. [Google Scholar] [CrossRef]
- Corde, S.; Ta Phuoc, K.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 2013, 85, 1–48. [Google Scholar] [CrossRef]
- Yu, C.; Liu, J.; Wang, W.; Li, W.; Qi, R.; Zhang, Z.; Qin, Z.; Liu, J.; Fang, M.; Feng, K.; et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front. Appl. Phys. Lett. 2018, 112, 133503. [Google Scholar] [CrossRef] [Green Version]
- Giulietti, A. Laser-Driven Particle Acceleration towards Radiobiology and Medicine; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Cole, J.M.; Wood, J.C.; Lopes, N.C.; Poder, K.; Abel, R.L.; Alatabi, S.; Bryant, J.S.; Jin, A.; Kneip, S.; Mecseki, K.; et al. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep. 2015, 5, 13244. [Google Scholar] [CrossRef]
- Banerjee, S.; Kalmykov, S.Y.; Powers, N.D.; Golovin, G.; Ramanathan, V.; Cunningham, N.J.; Brown, K.J.; Chen, S.; Ghebregziabher, I.; Shadwick, B.A.; et al. Stable, tunable, quasimonoenergetic electron beams produced in a laser wakefield near the threshold for self-injection. Phys. Rev. ST Accel. Beams 2013, 16, 031302. [Google Scholar] [CrossRef] [Green Version]
- Kuschel, S.; Schwab, M.B.; Yeung, M.; Hollatz, D.; Seidel, A.; Ziegler, W.; Savert, A.; Kaluza, M.C.; Zepf, M. Controlling the Self-Injection Threshold in Laser Wakefield Accelerators. Phys. Rev. Lett. 2018, 121, 154801. [Google Scholar] [CrossRef] [Green Version]
- Martinez de la Ossa, A.; Grebenyuk, J.; Mehrling, T.; Schaper, L.; Osterhoff, J. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection. Phys. Rev. Lett. 2013, 111, 245003. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Hua, J.F.; Xu, X.L.; Zhang, C.J.; Yan, L.X.; Du, Y.C.; Huang, W.H.; Chen, H.B.; Tang, C.X.; Lu, W.; et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator. Phys. Rev. Lett. 2013, 111, 015003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N.A.; Chen, M.; Li, G.Y.; Zhu, Q.J.; Liao, H.; Sokollik, T.; Liu, F.; et al. Demonstration of self-truncated ionization injection for GeV electron beams. Sci. Rep. 2015, 5, 14659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irman, A.; Couperus, J.P.; Debus, A.; Köhler, A.; Krämer, J.M.; Pausch, R.; Zarini, O.; Schramm, U. Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection. Plasma Phys. Control. Fusion 2018, 60, 044015. [Google Scholar] [CrossRef]
- Silva, T.; Helm, A.; Vieira, J.; Fonseca, R.; Silva, L.O. On the use of the envelope model for down-ramp injection in laser-plasma accelerators. Plasma Phys. Control. Fusion 2020, 62, 024001. [Google Scholar] [CrossRef]
- Ekerfelt, H.; Hansson, M.; Gallardo Gonzalez, I.; Davoine, X.; Lundh, O. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration. Sci. Rep. 2017, 7, 12229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Esarey, E.; Geddes, C.G.R.; Cormier-Michel, E.; Schroeder, C.B.; Bulanov, S.S.; Benedetti, C.; Yu, L.L.; Rykovanov, S.; Bruhwiler, D.L.; et al. Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator. Phys. Rev. ST Accel. Beams 2014, 17. [Google Scholar] [CrossRef] [Green Version]
- Gonsalves, A.J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; De Raadt, T.C.H.; Steinke, S.; Bin, J.H.; Bulanov, S.S.; Van Tilborg, J.; et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. Phys. Rev. Lett. 2019, 122, 084801. [Google Scholar] [CrossRef] [Green Version]
- Debus, A.; Pausch, R.; Huebl, A.; Steiniger, K.; Widera, R.; Cowan, T.E.; Schramm, U.; Bussmann, M. Circumventing the Dephasing and Depletion Limits of Laser-Wakefield Acceleration. Phys. Rev. X 2019, 9, 031044. [Google Scholar] [CrossRef] [Green Version]
- Palastro, J.P.; Shaw, J.L.; Franke, P.; Ramsey, D.; Simpson, T.T.; Froula, D.H. Dephasingless Laser Wakefield Acceleration. Phys. Rev. Lett. 2020, 124, 134802. [Google Scholar] [CrossRef]
- Caizergues, C.; Smartsev, S.; Malka, V.; Thaury, C. Phase-locked laser-wakefield electron acceleration. Nat. Photonics 2020, 14, 475–749. [Google Scholar] [CrossRef]
- Tomassini, P.; Terzani, D.; Baffigi, F.; Brandi, F.; Fulgentini, L.; Koester, P.; Labate, L.; Palla, D.; Gizzi, L.A. High-quality 5 GeV electron bunches with resonant multi-pulse ionization injection. Plasma Phys. Control. Fusion 2020, 62, 014010. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Liu, J.; Wang, W.; Yu, C.; Tian, Y.; Nakajima, K.; Deng, A.; Qi, R.; Wang, C.; et al. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching. Phys. Plasmas 2016, 23, 053106. [Google Scholar] [CrossRef]
- Brinkmann, R.; Delbos, N.; Dornmair, I.; Kirchen, M.; Assmann, R.; Behrens, C.; Floettmann, K.; Grebenyuk, J.; Gross, M.; Jalas, S.; et al. Chirp Mitigation of Plasma-Accelerated Beams by a Modulated Plasma Density. Phys. Rev. Lett. 2017, 118, 214801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.P.; Hua, J.F.; Zhou, Z.; Zhang, J.; Liu, S.; Peng, B.; Fang, Y.; Nie, Z.; Ning, X.N.; Pai, C.H.; et al. Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy Spread Reduction. Phys. Rev. Lett. 2019, 122, 204804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manahan, G.G.; Habib, A.F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z.M.; et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 2017, 8, 15705. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, R.; Wesch, S.; Aschikhin, A.; Bohlen, S.; Behrens, C.; Garland, M.J.; Goldberg, L.; Gonzalez, P.; Knetsch, A.; Libov, V.; et al. Tunable Plasma-Based Energy Dechirper. Phys. Rev. Lett. 2019, 122, 034801. [Google Scholar] [CrossRef] [Green Version]
- Dopp, A.; Thaury, C.; Guillaume, E.; Massimo, F.; Lifschitz, A.; Andriyash, I.; Goddet, J.P.; Tazfi, A.; Ta Phuoc, K.; Malka, V. Energy-Chirp Compensation in a Laser Wakefield Accelerator. Phys. Rev. Lett. 2018, 121, 074802. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.T.; Li, W.T.; Liu, J.S.; Zhang, Z.J.; Qi, R.; Yu, C.H.; Liu, J.Q.; Fang, M.; Qin, Z.Y.; Wang, C.; et al. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control. Phys. Rev. Lett. 2016, 117, 124801. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Li, F.; An, W.; Dalichaouch, T.N.; Yu, P.; Lu, W.; Joshi, C.; Mori, W.B. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime. Phys. Rev. ST Accel. Beams 2017, 20, 111303. [Google Scholar] [CrossRef] [Green Version]
- Guénot, D.; Gustas, D.; Vernier, A.; Beaurepaire, B.; Böhle, F.; Bocoum, M.; Lozano, M.; Jullien, A.; Lopez-Martens, R.; Lifschitz, A.; et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photonics 2017, 11, 293–296. [Google Scholar] [CrossRef] [Green Version]
- He, Z.H.; Hou, B.; Nees, J.A.; Easter, J.H.; Faure, J.; Krushelnick, K.; Thomas, A.G.R. High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp. New J. Phys. 2013, 15. [Google Scholar] [CrossRef]
- Maier, A.R.; Delbos, N.M.; Eichner, T.; Hübner, L.; Jalas, S.; Jeppe, L.; Jolly, S.W.; Kirchen, M.; Leroux, V.; Messner, P.; et al. Decoding Sources of Energy Variability in a Laser-Plasma Accelerator. Phys. Rev. X 2020, 10, 031039. [Google Scholar] [CrossRef]
- Buck, A.; Wenz, J.; Xu, J.; Khrennikov, K.; Schmid, K.; Heigoldt, M.; Mikhailova, J.M.; Geissler, M.; Shen, B.; Krausz, F.; et al. Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 2013, 110, 185006. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Zhang, Z.; Wang, W.; Liu, J.; Li, R. Sharp plasma pinnacle structure based on shockwave for an improved laser wakefield accelerator. Plasma Phys. Control. Fusion 2018, 60, 075008. [Google Scholar] [CrossRef]
- Bulanov, S.; Naumova, N.; Pegoraro, F.; Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phy. Rev. E 1998, 58, R5257. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.C.; Rosenzweig, J.B.; Suk, H. Plasma density transition trapping as a possible high-brightness electron beam source. Phys. Rev. ST Accel. Beams 2004, 7, 011301. [Google Scholar] [CrossRef] [Green Version]
- Tooley, M.P.; Ersfeld, B.; Yoffe, S.R.; Noble, A.; Brunetti, E.; Sheng, Z.M.; Islam, M.R.; Jaroszynski, D.A. Towards Attosecond High-Energy Electron Bunches: Controlling Self-Injection in Laser-Wakefield Accelerators Through Plasma-Density Modulation. Phys. Rev. Lett. 2017, 119, 044801. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Qi, R.; Wang, W.; Liu, J.; Li, W.; Wang, C.; Zhang, Z.; Liu, J.; Qin, Z.; Fang, M.; et al. Ultrahigh brilliance quasi-monochromatic MeV gamma-rays based on self-synchronized all-optical Compton scattering. Sci. Rep. 2016, 6, 29518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Zhang, Z.; Yang, X.; Hu, J.; Ji, P.; Gui, J.; Wang, C.; Chen, J.; Peng, Y.; Liu, X.; et al. Performance improvement of a 200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator. Opt. Laser Technol. 2020, 131, 106453. [Google Scholar] [CrossRef]
- Swanson, K.K.; Tsai, H.E.; Barber, S.K.; Lehe, R.; Mao, H.S.; Steinke, S.; Van Tilborg, J.; Nakamura, K.; Geddes, C.G.R.; Schroeder, C.B.; et al. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector. Phys. Rev. Accel. Beams 2017, 20, 051301. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-E.; Swanson, K.K.; Barber, S.K.; Lehe, R.; Mao, H.-S.; Mittelberger, D.E.; Steinke, S.; Nakamura, K.; Van Tilborg, J.; Schroeder, C.; et al. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile. Phys. Plasmas 2018, 25, 043107. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, T.; Comet, M.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Aleonard, M.M. Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 2013, 84, 103510. [Google Scholar] [CrossRef]
- Lundh, O.; Lim, J.; Rechatin, C.; Ammoura, L.; Ben-Ismaïl, A.; Davoine, X.; Gallot, G.; Goddet, J.P.; Lefebvre, E.; Malka, V.; et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 2011, 7, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Ta Phuoc, K.; Corde, S.; Thaury, C.; Malka, V.; Tafzi, A.; Goddet, J.P.; Shah, R.C.; Sebban, S.; Rousse, A. All-optical Compton gamma-ray source. Nat. Photonics 2012, 6, 308–311. [Google Scholar] [CrossRef]
- Buck, A.; Nicolai, M.; Schmid, K.; Sears, C.M.S.; Sävert, A.; Mikhailova, J.M.; Krausz, F.; Kaluza, M.C.; Veisz, L. Real-time observation of laser-driven electron acceleration. Nat. Phys. 2011, 7, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Lehe, R.; Kirchen, M.; Andriyash, I.A.; Godfrey, B.B.; Vay, J.-L. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm. Comput. Phys. Commun. 2016, 203, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Jalas, S.; Dornmair, I.; Lehe, R.; Vincenti, H.; Vay, J.L.; Kirchen, M.; Maier, A.R. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods. Phys. Plasma 2017, 24, 033115. [Google Scholar] [CrossRef] [Green Version]
- Katsouleas, T.; Wilks, S.; Chen, P.; Dawson, J.M.; Su, J.J. Beam loading in plasma accelerators. Part. Accel. 1987, 22, 81–99. [Google Scholar]
- Tzoufras, M.; Lu, W.; Tsung, F.S.; Huang, C.; Mori, W.B.; Katsouleas, T.; Vieira, J.; Fonseca, R.A.; Silva, L.O. Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 2008, 101, 145002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, L.; Yu, C.; Feng, K.; Qin, Z.; Jiang, K.; Wang, H.; Luan, S.; Yang, X.; Xu, Y.; Leng, Y.; et al. Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator. Appl. Sci. 2021, 11, 2560. https://doi.org/10.3390/app11062560
Ke L, Yu C, Feng K, Qin Z, Jiang K, Wang H, Luan S, Yang X, Xu Y, Leng Y, et al. Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator. Applied Sciences. 2021; 11(6):2560. https://doi.org/10.3390/app11062560
Chicago/Turabian StyleKe, Lintong, Changhai Yu, Ke Feng, Zhiyong Qin, Kangnan Jiang, Hao Wang, Shixia Luan, Xiaojun Yang, Yi Xu, Yuxin Leng, and et al. 2021. "Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator" Applied Sciences 11, no. 6: 2560. https://doi.org/10.3390/app11062560
APA StyleKe, L., Yu, C., Feng, K., Qin, Z., Jiang, K., Wang, H., Luan, S., Yang, X., Xu, Y., Leng, Y., Wang, W., Liu, J., & Li, R. (2021). Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator. Applied Sciences, 11(6), 2560. https://doi.org/10.3390/app11062560