Non-Thermal Intervention of Lung Tumor by Core-Shell Magnetic Nanoparticles in a Magnetic Field
Abstract
:Featured Application
Abstract
1. Introduction
2. Preparation and Characterization of Magnetic Nanoparticles
3. Design and Simulations of The Cell Experiment Platform
3.1. Optimization of the Stimulation Coil Integrated with the Confocal Microscope
3.2. Simulation of the Magnetic Field
3.3. Calculation of the Rise in Temperature of the Stimulation Coil
4. Analysis of the Magnetic Nanoparticles
4.1. Force Analysis of MNPs in a Magnetic Field
4.2. Thermal Analysis of MNPs in Magnetic Stimulations
5. Cell Experiments
5.1. Preparation of A549 Lung Tumor Cells
5.2. Cell Proliferation
5.3. Scratch Wound-Healing Assay
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Vegerhof, A.; Barnoy, E.A.; Motiei, M.; Malka, D.; Danan, Y.; Zalevsky, Z.; Popovtzer, R. Targeted magnetic nanoparticles for mechanical lysis of tumor cells by low-amplitude alternating magnetic field. Materials 2016, 9, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigeoka, D.; Yamazaki, T.; Ishikawa, T.; Miike, K.; Fujiwara, K.; Ide, T.; Oshima, A.; Hashimoto, T.; Aihara, D.; Kanda, K.; et al. Functionalization and Magnetic Relaxation of Ferrite Nanoparticles for Theranostics. IEEE Trans.Magn. 2018, 54, 6100707. [Google Scholar] [CrossRef]
- Brizi, D.; Fontana, N.; Giovannetti, G.; Flori, A.; Menichetti, L.; Doumett, S.; Baldi, G.; Monorchio, A. A Novel Approach for Determining the Electromagnetic Properties of a Colloidal Fluid with Magnetic Nanoparticles for Hyperthermia Applications. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 70. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Qian, Z.; Yang, Y. Evaluation of tumor treatment of magnetic nanoparticles driven by extremely low frequency magnetic field. Sci. Rep. 2017, 7, 46287. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, T.; Tam, J.; Kuroda, S.; Scott, A.W.; Aaron, J.; Larson, T.; Shanker, M.; Correa, A.M.; Kondo, S.; Roth, J.A.; et al. EGFR-Targeted Hybrid Plasmonic Magnetic Nanoparticles Synergistically Induce Autophagy and Apoptosis in Non-Small Cell Lung Cancer Cells. PLoS ONE 2011, 6, e25507. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, A.; Di, C.R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano 2016, 10, 2436. [Google Scholar] [CrossRef]
- Chiriac, H.; Radu, E.; Tibu, M.; Stoian, G.; Ababei, G.; Labusca, L.; Herea, D.D.; Lupu, N. Fe-Cr-Nb-B ferromagnetic particles with shape anisotropy for cancer cell destruction by magneto-mechanical actuation. Sci. Rep. 2018, 8, 11538. [Google Scholar] [CrossRef]
- Cheng, Y.; Muroski, M.E.; Petit Dorothée, C.M.C.; Mansell, R.; Vemulkar, T.; Morshed, R.A.; Han, Y.; Balyasnikova, I.V.; Horbinski, C.M.; Huang, X.; et al. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma. J. Control. Release 2016, 223, 75. [Google Scholar] [CrossRef] [Green Version]
- Lunov, Q.; Uzhytchak, M.; Smolkova, B.; Lunova, M.; Jirsa, M.; Dempsey, N.M.; Dias, A.L.; Bonfim, M.; Hof, M.; Jurkiewicz, P.; et al. Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers 2019, 11, 1873. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Cook, J.R.; Hoopes, P.J.; Giustini, A. FEM numerical model study of heating in magnetic nanoparticles. Energy-Based Treat. Tissue Assess. VI. 2011, 79, 79010B. [Google Scholar]
- Dobson, J. Remote control of cellular behavior with magnetic nanoparticles. Nat. Nanotechnol. 2008, 3, 139. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Butler, J.P.; Ingber, D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993, 3, 1124. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Rozhkova, E.A.; Ulasov, I.V.; Bader, S.D.; Rajh, T.; Lesniak, M.S.; Novosad, V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010, 9, 165. [Google Scholar] [CrossRef]
- Miller, F.P.; Vandome, A.F.; John, M. Maxwell Stress Tensor; Alphascript Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
- Tay, C.Y.; Cai, P.; Setyawati, M.I.; Fang, W.; Tan, L.P.; Hong, C.H.L.; Chen, X.D.; Leong, D.T. Nanoparticles Strengthen Intracellular Tension and Retard Cellular Migration. Nano Lett. 2014, 14, 83. [Google Scholar] [CrossRef]
- Weinbaum, S.; Jiji, L.M. A new simplified bio-heat equation for the effect of blood flow on local average tissue temperature. J. Biomech. Eng. 1992, 114, 539. [Google Scholar] [CrossRef]
- Atkinson, W.J.; Brezovich, I.A.; Chakraborty, D.P. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans. Biomed. Eng. 1984, 1, 70. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.F.; Sougrat, R.; Zaher, A.; Ravasi, T.; Kosel, J. Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int. J. Nanomed. 2015, 10, 2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candeo, A.; Dughiero, F. Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles. IEEE Trans. Magn. 2009, 45, 1658. [Google Scholar] [CrossRef]
- Zhang, N.M.; Wang, S.H.; Wang, S.; Zhang, C.Y. Theoretical Analysis and Design of a Variable Frequency Magnetic Field Stimulation System for Tumor Suppression. IEEE Trans. Appl. Supercond. 2016, 26, 1. [Google Scholar] [CrossRef]
- Zhang, N.M.; Ning, S.Y.; Wang, S.H.; Zhang, C.Y.; Ren, Z.X.; Wang, S.; Hao, P.L. Study on the Effects of Magnetic Stimulation on K-Ras-Driven Lung Cancer in Mice. IEEE Trans. Magn. 2018, 54, 5001004. [Google Scholar] [CrossRef]
- Jonkman, J.E.N.; Cathcart, J.A.; Xu, F.; Bartolini, M.E.; Amon, J.E.; Stevens, K.M.; Colarusso, P. An introduction to the wound healing assay using livecell microscopy. Cell Adhes. Migr. 2014, 8, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Diameter | Turns | Wire Diameter |
---|---|---|---|
Planar spiral coil | 16~35 | 80 | 0.25 mm |
Solenoid | 35 | 80 | 0.25 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Wang, Z.; Ning, S.; Wang, S.; Wang, S.; Qiu, H. Non-Thermal Intervention of Lung Tumor by Core-Shell Magnetic Nanoparticles in a Magnetic Field. Appl. Sci. 2021, 11, 2003. https://doi.org/10.3390/app11052003
Zhang N, Wang Z, Ning S, Wang S, Wang S, Qiu H. Non-Thermal Intervention of Lung Tumor by Core-Shell Magnetic Nanoparticles in a Magnetic Field. Applied Sciences. 2021; 11(5):2003. https://doi.org/10.3390/app11052003
Chicago/Turabian StyleZhang, Naming, Ziang Wang, Shuya Ning, Shuhong Wang, Song Wang, and Hao Qiu. 2021. "Non-Thermal Intervention of Lung Tumor by Core-Shell Magnetic Nanoparticles in a Magnetic Field" Applied Sciences 11, no. 5: 2003. https://doi.org/10.3390/app11052003
APA StyleZhang, N., Wang, Z., Ning, S., Wang, S., Wang, S., & Qiu, H. (2021). Non-Thermal Intervention of Lung Tumor by Core-Shell Magnetic Nanoparticles in a Magnetic Field. Applied Sciences, 11(5), 2003. https://doi.org/10.3390/app11052003