Special Issue: The State of the Art of Thermochemical Heat Storage
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Borri, E.; Zsembinszki, G.; Cabeza, L.F. Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. Appl. Therm. Eng. 2021, 116666. [Google Scholar] [CrossRef]
- Freni, A.; Maggio, G.; Vasta, S.; Santori, G.; Polonara, F.; Restuccia, G. Optimization of a solar-powered adsorptive ice-maker by a mathematical method. Sol. Energy 2008. [Google Scholar] [CrossRef] [Green Version]
- Palomba, V.; Dawoud, B.; Sapienza, A.; Vasta, S.; Frazzica, A. On the impact of different management strategies on the performance of a two-bed activated carbon/ethanol refrigerator: An experimental study. Energy Convers. Manag. 2017, 142, 322–333. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Feng, X.; Chang, L.; Chen, Y.; Wang, X. The solutions to electric vehicle air conditioning systems: A review. Renew. Sustain. Energy Rev. 2018, 91, 443–463. [Google Scholar] [CrossRef]
- Airò Farulla, G.; Cellura, M.; Guarino, F.; Ferraro, M. A Review of Thermochemical Energy Storage Systems for Power Grid Support. Appl. Sci. 2020, 10, 3142. [Google Scholar] [CrossRef]
- Vasta, S.; Palomba, V.; La Rosa, D.; Bonanno, A. Adsorption Cold Storage for Mobile Applications. Appl. Sci. 2020, 10, 2044. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, L.; De Antonellis, S.; Vasta, S.; Brancato, V.; Freni, A. Modified Silicone-SAPO34 Composite Materials for Adsorption Thermal Energy Storage Systems. Appl. Sci. 2020, 10, 8715. [Google Scholar] [CrossRef]
- Kuznik, F.; Johannes, K. Thermodynamic Efficiency of Water Vapor/Solid Chemical Sorption Heat Storage for Buildings: Theoretical Limits and Integration Considerations. Appl. Sci. 2020, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.S.; Costa, V.A.F.; Brites, G.J.V.N.; Gaspar, A.R.; Costa, J.J. Performance Analysis of a Solar DHW System with Adsorption Module Operating in Different World Locations. Appl. Sci. 2019, 9, 5480. [Google Scholar] [CrossRef] [Green Version]
- di Palo, M.; Sabatelli, V.; Buzzi, F.; Gabbrielli, R. Experimental and Numerical Assessment of a Novel All-In-One Adsorption Thermal Storage with Zeolite for Thermal Solar Applications. Appl. Sci. 2020, 10, 8517. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasta, S. Special Issue: The State of the Art of Thermochemical Heat Storage. Appl. Sci. 2021, 11, 1956. https://doi.org/10.3390/app11041956
Vasta S. Special Issue: The State of the Art of Thermochemical Heat Storage. Applied Sciences. 2021; 11(4):1956. https://doi.org/10.3390/app11041956
Chicago/Turabian StyleVasta, Salvatore. 2021. "Special Issue: The State of the Art of Thermochemical Heat Storage" Applied Sciences 11, no. 4: 1956. https://doi.org/10.3390/app11041956
APA StyleVasta, S. (2021). Special Issue: The State of the Art of Thermochemical Heat Storage. Applied Sciences, 11(4), 1956. https://doi.org/10.3390/app11041956