Characterization of EstDR4, a Novel Cold-Adapted Insecticides-Metabolizing Esterase from Deinococcus radiodurans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Analysis and Homology Modeling of EstDR4
2.2. Construction of Prokaryotic Expression Recombinant Plasmid
2.3. Protein Expression and Purification
2.4. Site-Directed Mutagenesis of the Catalytic Triplet
2.5. Determination of Substrate Specificity
2.6. Determination of Temperature, pH, Optimum and Stability
2.7. Effects of Metal Ions, Organic Solvents, and Detergents on Enzyme Activity
2.8. Kinetic Parameters
2.9. Determination of Insecticide Degradation
2.10. Statistical Analysis
3. Results
3.1. Sequence Analysis and Expression of EstDR4
3.2. Substrate Specificity of EstDR4
3.3. Effects of Temperature and pH on EstDR4
3.4. Effects of Various Metal Ions, Organic Solvents and Detergents on EstDR4
3.5. Enzyme Kinetics
3.6. Degradation Properties of EstDR4 to Insecticides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarmah, N.; Revathi, D.; Sheelu, G.; Yamuna Rani, K.; Sridhar, S.; Mehtab, V.; Sumana, C. Recent advances on sources and industrial applications of lipases. Biotechnol. Prog. 2018, 34, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Bornscheuer, U.T. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 2002, 26, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Chahiniana, H.; Sarda, L. Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein Pept. Lett. 2009, 16, 1149–1161. [Google Scholar] [CrossRef]
- Arpigny, J.L.; Jaeger, K.E. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 1999, 343, 177. [Google Scholar] [CrossRef]
- Mangla, V.; Ravi, B.; Mehra, S.; Mehrotra, S.; Mehrotra, R. Biofuels: An overview with special emphasis on biodiesel and the role of lipase enzyme in its synthesis. Curr. Chem. Biol. 2013, 7, 96–103. [Google Scholar] [CrossRef]
- Schmid, R.D.; Verger, R. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. Engl. 1998, 37, 1608–1633. [Google Scholar] [CrossRef]
- Sharma, S.; Kanwar, S.S. Organic solvent tolerant lipases and applications. Sci. World J. 2014, 625258, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ganasen, M.; Yaacob, N.; Rahman, R.N.; Leow, A.T.; Basri, M.; Salleh, A.B.; Ali, M.S. Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int. J. Biol. Macromol. 2016, 92, 1266–1276. [Google Scholar] [CrossRef]
- Burg, B.V.D. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 2003, 6, 213–218. [Google Scholar] [CrossRef]
- Dalmaso, G.Z.; Lage, C.A.; Mazotto, A.M.; Dias, E.P.; Caldas, L.A.; Ferreira, D.; Vermelho, A.B. Extracellular peptidases from Deinococcus radiodurans. Extremophiles 2015, 19, 989–999. [Google Scholar] [CrossRef]
- Lage, C.; Dalmaso, G.; Teixeira, L.; Bendia, A.; Paulino-Lima, I.; Galante, D.; Janot-Pacheco, E.; Abrevaya, X.; Azúa-Bustos, A.; Pellizari, V.; et al. Mini-Review: Probing the limits of extremophilic life in extraterrestrial environment-simulated experiments. Int. J. Astrobiol. 2012, 11, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Airo, A.; Chan, S.L.; Martinez, Z.; Platt, M.O.; Trent, J.D. Heat shock and cold shock in Deinococcus radiodurans. Cell Biochem. Biophys. 2004, 40, 277–288. [Google Scholar] [CrossRef]
- Slade, D.; Radman, M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 2011, 75, 133–191. [Google Scholar] [CrossRef] [Green Version]
- Rehdorf, J.; Behrens, G.A.; Nguyen, G.S.; Kourist, R.; Bornscheuer, U.T. Pseudomonas putida esterase contains a GGG(a)x-motif confering activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 2012, 93, 1119–1126. [Google Scholar] [CrossRef]
- Henke, E.; Pleiss, J.; Bornscheuer, U.T. Activity of lipases and esterases towards tertiary alcohols: Insights into structure-function relationships. Angew. Chem. Int. Ed. 2002, 41, 3211–3213. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Yan, Q.; Yang, S.; Duan, X.; Jiang, Z. Biochemical characterization of a first fungal esterase from Rhizomucor miehei showing high efficiency of ester synthesis. PLoS ONE 2013, 8, e77856. [Google Scholar]
- Hasenpusch, D.; Bornscheuer, U.T.; Langel, W. Simulation on the structure of pig liver esterase. J. Mol. Model. 2011, 17, 1493–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.R.; Maester, T.C.; Mercaldi, G.F.; de Macedo Lemos, E.G.; Hyvönen, M.; Balan, A. From a metagenomic source to a high-resolution structure of a novel alkaline esterase. Appl. Microbiol. Biotechnol. 2017, 101, 4935–4949. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Zhang, Y.; Gong, Z.; Ren, S.; Li, P.; Xie, J. Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU). Microbiol. Res. 2017, 196, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Dukunde, A.; Schneider, D.; Lu, M.; Brady, S.; Daniel, R. A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnol. Lett. 2017, 39, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Dua, A.; Gupta, R. Functional characterization of hormone sensitive-like lipase from Bacillus halodurans: Synthesis and recovery of pNP-laurate with high yields. Extremophiles 2017, 21, 871–889. [Google Scholar] [CrossRef]
- Dong, J.; Gasmalla, M.A.A.; Zhao, W.; Sun, J.; Liu, W.; Wang, M.; Han, L.; Yang, R. Characterization of a cold-adapted esterase and mutants from a Psychotolerant pseudomonas sp. strain. Biotechnol. Appl. Biochem. 2017, 64, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Culsum, U.; Tang, W.; Zhang, S.W.; Wu, G.; Liu, Z. Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda. Enzym. Microb. Technol. 2016, 85, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Petrovskaya, L.E.; Novototskaya-Vlasova, K.A.; Gapizov, S.S.; Spirina, E.V.; Durdenko, E.V.; Rivkina, E.M. New member of the hormone-sensitive lipase family from the permafrost microbial community. Bioengineered 2017, 8, 420–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Wang, Q.; Lin, X.; Bun Ng, T.B.; Yan, R.; Lin, J.; Ye, X. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci. Rep. 2016, 6, 19494. [Google Scholar] [CrossRef]
- Kulakova, L.; Galkin, A.; Nakayama, T.; Nishino, T.; Esaki, N. Cold-active esterase from Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of Gly→Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 2004, 1696, 59–65. [Google Scholar] [CrossRef]
- Fan, X.; Liang, W.; Li, Y.; Li, H.; Liu, X. Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microb. Cell Fact. 2017, 16, 149. [Google Scholar] [CrossRef]
- Yong-Suk, L. Isolation and characterization of a novel cold-adapted esterase, MtEst45, from Microbulbifer thermotolerans DAU221. Front. Microbiol. 2016, 7, 218. [Google Scholar]
- Kademi, A.; Ait-Abdelkader, N.; Fakhreddine, L.; Baratti, J.C. Characterization of a new thermostable esterase from the moderate thermophilic bacterium Bacillus circulans. J. Mol. Catal. B Enzym. 2000, 10, 395–401. [Google Scholar] [CrossRef]
- Lu, M.; Dukunde, A.; Daniel, R. Biochemical profiles of two thermostable and organic solvent-tolerant esterases derived from a compost metagenome. Appl. Microbiol. Biotechnol. 2019, 26, 1–17. [Google Scholar] [CrossRef]
- Sukul, P.; Lupilov, N.; Leichert, L.I. Characterization of ML-005, a novel metaproteomics-derived esterase. Front. Microbiol. 2018, 9, 1925. [Google Scholar] [CrossRef]
- Delorme, V.; Dhouib, R.; Canaan, S.; Fotiadu, F.; Carrière, F.; Cavalier, J.F. Effects of surfactants on lipase structure, activity, and inhibition. Pharm. Res. 2011, 28, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Siso, M.I.G.; Cerdan, M.E.; Lopez-Lopez, O. New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci. 2014, 15, 445–455. [Google Scholar]
- Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 2004, 64, 763–781. [Google Scholar] [CrossRef]
- Mohamed, Y.M.; Ghazy, M.A.; Sayed, A.; Ouf, A.; El-Dorry, H.; Siam, R. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool. Sci. Rep. 2013, 3, 3358. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, P.; Tan, Y.; Kinsella, G.K.; Henehan, G.T.; Ryan, B.J. Solvent stable microbial lipases: Current understanding and biotechnological applications. Biotechnol. Lett. 2019, 41, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Dror, A.; Kanteev, M.; Kagan, I.; Gihaz, S.; Shahar, A.; Fishman, A. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus. Appl. Microbiol. Biotechnol. 2015, 99, 9449–9461. [Google Scholar] [CrossRef]
- Yagonia, C.F.J.; Park, H.J.; Hong, S.Y.; Yoo, Y.J. Simultaneous improvements in the activity and stability of Candida antarctica lipase B through multiple-site mutagenesis. Biotechnol. Bioproc. E 2015, 20, 218–224. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhatt, K.; Huang, Y.; Lin, Z.; Chen, S. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere 2020, 244, 125507. [Google Scholar] [CrossRef]
- Wei, T.; Feng, S.; Shen, Y.; He, P.; Ma, G.; Yu, X.; Zhang, F.; Mao, D. Characterization of a novel thermophilic pyrethroid-hydrolyzing carboxylesterase from Sulfolobus tokodaii into a new family. J. Mol. Catal. B Enzym. 2013, 97, 225–232. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lu, W.; Wang, J.; Chen, M.; Zhang, W.; Lin, M.; Zhou, Z.; Liu, Z. Characterization of EstDR4, a Novel Cold-Adapted Insecticides-Metabolizing Esterase from Deinococcus radiodurans. Appl. Sci. 2021, 11, 1864. https://doi.org/10.3390/app11041864
Zhang Y, Lu W, Wang J, Chen M, Zhang W, Lin M, Zhou Z, Liu Z. Characterization of EstDR4, a Novel Cold-Adapted Insecticides-Metabolizing Esterase from Deinococcus radiodurans. Applied Sciences. 2021; 11(4):1864. https://doi.org/10.3390/app11041864
Chicago/Turabian StyleZhang, Yage, Wei Lu, Jin Wang, Ming Chen, Wei Zhang, Min Lin, Zhengfu Zhou, and Zhu Liu. 2021. "Characterization of EstDR4, a Novel Cold-Adapted Insecticides-Metabolizing Esterase from Deinococcus radiodurans" Applied Sciences 11, no. 4: 1864. https://doi.org/10.3390/app11041864
APA StyleZhang, Y., Lu, W., Wang, J., Chen, M., Zhang, W., Lin, M., Zhou, Z., & Liu, Z. (2021). Characterization of EstDR4, a Novel Cold-Adapted Insecticides-Metabolizing Esterase from Deinococcus radiodurans. Applied Sciences, 11(4), 1864. https://doi.org/10.3390/app11041864