A Study of EEG Feature Complexity in Epileptic Seizure Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Extracted Features
2.3. Complexity Metrics for Pre-Ictal and Inter-Ictal Feature Classification
- Fisher discriminant ratio, F1: quantifying the separability capability between the classes. It is given by:
- Volume of overlap region, F2: measuring the width of the entire interval encompassing the two classes. It is denoted by:
- Individual feature efficiency, F3: describing how much an attribute contribute to distinguish between the two classes. It is defined by:
2.4. Complexity Metrics for Cross-Subject Variability Assessement
- The Fisher discriminant ratio, F1, for C classes extended from Equation (1) as:
- The volume of overlap region, F2, for a multi-class problem is given by:
- The individual feature efficiency for multiple classes can be written as:
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Complexity of the Pre-Ictal and Inter-Ictal Features
3.2. Cross-Patient Variability Assessement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbols | Extracted features |
variance | |
skewness | |
kurtosis | |
HM | Hjorth parameter (mobility) |
HC | Hjorth parameter (complexity) |
decorrelation time | |
error of the auto-regressive modeling | |
relative power of the delta spectral band | |
relative power of the theta spectral band | |
relative power of the alpha spectral band | |
relative power of the beta spectral band | |
relative power of the gamma spectral band | |
spectral edge frequency | |
wavelet energy | |
wavelet entropy | |
E | signal energy |
signal accumulated energy | |
correlation dimension | |
correlation density | |
largest Lyapunov exponent | |
local flow | |
algorithmic complexity | |
loss of recurrence | |
marginal predictability | |
surrogate-corrected version of the correlation dimension | |
surrogate-corrected version of the largest Lyapunov exponent | |
surrogate-corrected version of the local flow | |
surrogate-corrected version of the algorithmic complexity | |
bivariate spectral power features | |
cross correlation | |
linear coherence | |
mutual information | |
R | mean phase coherence |
index based on conditional probability using the wavelet transform | |
index based on conditional probability using the Hilbert transform | |
index based on Shannon entropy using the wavelet transform | |
index based on Shannon entropy using the Hilbert transform | |
S | non-linear interdependence measure |
H | non-linear interdependence normalized measure |
References
- World Health Organization. Epilepsy; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Coll, M.; Allegue, C.; Partemi, S.; Mates, J.; Del Olmo, B.; Campuzano, O.; Pascali, V.; Iglesias, A.; Striano, P.; Oliva, A.; et al. Genetic investigation of sudden unexpected death in epilepsy cohort by panel target resequencing. Int. J. Leg. Med. 2016, 130, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Partemi, S.; Vidal, M.C.; Striano, P.; Campuzano, O.; Allegue, C.; Pezzella, M.; Elia, M.; Parisi, P.; Belcastro, V.; Casellato, S.; et al. Genetic and forensic implications in epilepsy and cardiac arrhythmias: A case series. Int. J. Leg. Med. 2015, 129, 495–504. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Mormann, F.; Kreuz, T.; Rieke, C.; Andrzejak, R.; Kraskov, A.; David, P.; Elger, C.; Lehnertz, K. On the predictability of epileptic seizures. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2005, 116, 569–587. [Google Scholar] [CrossRef]
- Assi, E.B.; Nguyen, D.K.; Rihana, S.; Sawan, M. Towards accurate prediction of epileptic seizures: A review. Biomed. Signal Process. Control. 2017, 34, 144–157. [Google Scholar] [CrossRef]
- Gadhoumi, K.; Lina, J.M.; Mormann, F.; Gotman, J. Seizure prediction for therapeutic devices: A review. J. Neurosci. Methods 2016, 260, 270–282. [Google Scholar] [CrossRef]
- Teixeira, C.A.; Direito, B.; Bandarabadi, M.; Le Van Quyen, M.; Valderrama, M.; Schelter, B.; Schulze-Bonhage, A.; Navarro, V.; Sales, F.; Dourado, A. Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients. Comput. Methods Programs Biomed. 2014, 114, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Andrzejak, R.G.; Mormann, F.; Kreuz, T.; Rieke, C.; Kraskov, A.; Elger, C.E.; Lehnertz, K. Testing the null hypothesis of the nonexistence of a preseizure state. Phys. Rev. E 2003, 67, 010901. [Google Scholar] [CrossRef] [Green Version]
- Andrzejak, R.G.; Chicharro, D.; Elger, C.E.; Mormann, F. Seizure prediction: Any better than chance? Clin. Neurophysiol. 2009, 120, 1465–1478. [Google Scholar] [CrossRef] [PubMed]
- Kreuz, T.; Andrzejak, R.G.; Mormann, F.; Kraskov, A.; Stögbauer, H.; Elger, C.E.; Lehnertz, K.; Grassberger, P. Measure profile surrogates: A method to validate the performance of epileptic seizure prediction algorithms. Phys. Rev. E 2004, 69, 061915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, M.J.; O’Brien, T.J.; Berkovic, S.F.; Murphy, M.; Morokoff, A.; Fabinyi, G.; D’Souza, W.; Yerra, R.; Archer, J.; Litewka, L.; et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol. 2013, 12, 563–571. [Google Scholar] [CrossRef]
- Moghim, N.; Corne, D.W. Predicting epileptic seizures in advance. PLoS ONE 2014, 9, e99334. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, K.M.; Pezoulas, V.C.; Zervakis, M.; Konitsiotis, S.; Koutsouris, D.D.; Fotiadis, D.I. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput. Biol. Med. 2018, 99, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Daoud, H.; Bayoumi, M.A. Efficient epileptic seizure prediction based on deep learning. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K. A data complexity analysis of comparative advantages of decision forest constructors. Pattern Anal. Appl. 2002, 5, 102–112. [Google Scholar] [CrossRef]
- Bernadó-Mansilla, E.; Ho, T.K. Domain of competence of XCS classifier system in complexity measurement space. IEEE Trans. Evol. Comput. 2005, 9, 82–104. [Google Scholar] [CrossRef]
- Ho, T.K.; Bernadó-Mansilla, E. Classifier domains of competence in data complexity space. In Data Complexity in Pattern Recognition; Springer: London, UK, 2006; pp. 135–152. [Google Scholar]
- Mansilla, E.B.; Ho, T.K. On classifier domains of competence. In Proceedings of the 17th IEEE International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 26 August 2004; Volume 1, pp. 136–139. [Google Scholar]
- Shoeb, A.H. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Rasekhi, J.; Mollaei, M.R.K.; Bandarabadi, M.; Teixeira, C.A.; Dourado, A. Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. J. Neurosci. Methods 2013, 217, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Assi, E.B.; Sawan, M.; Nguyen, D.; Rihana, S. A hybrid mRMR-genetic based selection method for the prediction of epileptic seizures. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; pp. 1–4. [Google Scholar]
- Bandarabadi, M.; Teixeira, C.A.; Rasekhi, J.; Dourado, A. Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 2015, 126, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Bandarabadi, M.; Rasekhi, J.; Teixeira, C.A.; Karami, M.R.; Dourado, A. On the proper selection of preictal period for seizure prediction. Epilepsy Behav. 2015, 46, 158–166. [Google Scholar] [CrossRef]
- Mormann, F.; Andrzejak, R.G.; Elger, C.E.; Lehnertz, K. Seizure prediction: The long and winding road. Brain 2007, 130, 314–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, C.; Direito, B.; Feldwisch-Drentrup, H.; Valderrama, M.; Costa, R.; Alvarado-Rojas, C.; Nikolopoulos, S.; Le Van Quyen, M.; Timmer, J.; Schelter, B.; et al. EPILAB: A software package for studies on the prediction of epileptic seizures. J. Neurosci. Methods 2011, 200, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Damaševičius, R.; Maskeliūnas, R.; Woźniak, M.; Połap, D. Visualization of physiologic signals based on Hjorth parameters and Gramian Angular Fields. In Proceedings of the 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Kosice, Slovakia, 7–10 February 2018; pp. 000091–000096. [Google Scholar]
- Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; Volume 7. [Google Scholar]
- Andrzejak, R.G.; Widman, G.; Lehnertz, K.; Rieke, C.; David, P.; Elger, C. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 2001, 44, 129–140. [Google Scholar] [CrossRef]
- Iasemidis, L.D.; Sackellares, J.C.; Zaveri, H.P.; Williams, W.J. Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr. 1990, 2, 187–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damasevicius, R.; Martisius, I.; Jusas, V.; Birvinskas, D. Fractional delay time embedding of EEG signals into high dimensional phase space. Elektron. Elektrotechnika 2014, 20, 55–58. [Google Scholar] [CrossRef]
- Iasemidis, L.; Principe, J.; Sackellares, J. Measurement and quantification of spatiotemporal dynamics of human epileptic seizures. Nonlinear Biomed. Signal Process. 2000, 2, 294–318. [Google Scholar]
- Lehnertz, K.; Andrzejak, R.G.; Arnhold, J.; Kreuz, T.; Mormann, F.; Rieke, C.; Widman, G.; Elger, C.E. Nonlinear EEG Analysis in Epilepsy: Its Possible Use for Interictal Focus Localization, Seizure Anticipation, and. J. Clin. Neurophysiol. 2001, 18, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Lerner, D.E. Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure. Phys.-Sect. D 1996, 97, 563–576. [Google Scholar] [CrossRef]
- Savit, R.; Green, M. Time series and dependent variables. Phys. D Nonlinear Phenom. 1991, 50, 95–116. [Google Scholar] [CrossRef]
- Ho, T.K.; Baird, H.S. Large-scale simulation studies in image pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 1067–1079. [Google Scholar]
- Kolmogorov, A.N. Three approaches to the quantitative definition ofinformation. Probl. Inf. Transm. 1965, 1, 1–7. [Google Scholar]
- Li, M.; Vitányi, P. An Introduction to Kolmogorov Complexity and Its Applications; Springer: New York, NY, USA, 2008; Volume 3. [Google Scholar]
- Maciejowski, J.M. Model discrimination using an algorithmic information criterion. Automatica 1979, 15, 579–593. [Google Scholar] [CrossRef]
- Basu, M.; Ho, T.K. Data Complexity in Pattern Recognition; Springer Science & Business Media: London, UK, 2006. [Google Scholar]
- Mezghani, N.; Mechmeche, I.; Mitiche, A.; Ouakrim, Y.; De Guise, J.A. An analysis of 3D knee kinematic data complexity in knee osteoarthritis and asymptomatic controls. PLoS ONE 2018, 13, e0202348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morán-Fernández, L.; Bolón-Canedo, V.; Alonso-Betanzos, A. Centralized vs. distributed feature selection methods based on data complexity measures. Knowl.-Based Syst. 2017, 117, 27–45. [Google Scholar] [CrossRef]
- Sun, M.; Liu, K.; Wu, Q.; Hong, Q.; Wang, B.; Zhang, H. A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis. Pattern Recognit. 2019, 90, 346–362. [Google Scholar] [CrossRef]
- Harrison, M.A.F.; Osorio, I.; Frei, M.G.; Asuri, S.; Lai, Y.C. Correlation dimension and integral do not predict epileptic seizures. Chaos Interdiscip. J. Nonlinear Sci. 2005, 15, 033106. [Google Scholar] [CrossRef] [PubMed]
- McSharry, P.E.; Smith, L.A.; Tarassenko, L. Prediction of epileptic seizures: Are nonlinear methods relevant? Nat. Med. 2003, 9, 241–242. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Luo, L.; Parhi, K.K.; Netoff, T. Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 2011, 52, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2017. [Google Scholar]
Complexity Metrics | Lower and Upper Thresholds |
---|---|
Fisher discriminant ratio F1 | {<0.001,0.017} |
Volume of overlap region F2 | {} |
Feature efficiency F3 | {<0.001,0.0048} |
Feature | Type | p-Value |
---|---|---|
Hjorth parameter, HM | linear, univariate | <0.001 |
Hjorth parameter, HC | linear, univariate | <0.001 |
Relative gamma band power spectral, | linear, univariate | <0.001 |
Bivariate spectral power characteristics, | linear, bivariate | <0.001 |
Bivariate spectral power characteristics, | linear, bivariate | <0.001 |
Bivariate spectral power characteristics, | linear, bivariate | <0.001 |
Mutual information, | linear, bivariate | <0.001 |
Phase synchronization index based on conditional | ||
probability using the wavelet transform, | non-linear, bivariate | <0.001 |
Phase synchronization index based on conditional | ||
probability using the Hilbert transform, | non-linear, bivariate | <0.001 |
Mean phase coherence, R | non-linear, bivariate | <0.001 |
Data-Sets | Maximum Fisher Discriminant Ratio | Maximum Feature Efficiency |
---|---|---|
Iris: Setosa-Versicolor | 31.19 | 1.0 |
Iris: Setosa-Virginica | 49.94 | 1.0 |
Iris: Versicolor-Virginica | 4.27 | 0.63 |
HAR | 2.66 | 0.61 |
Letter | 0.9 | 0.25 |
Epilepsy | 0.024 | 0.003 |
Random data 1 | 5.3 × 10 | 0.007 |
Random data 2 | 1.7 × 10 | 1.6 × 10 |
Complexity Metrics | Lower and Upper Thresholds |
---|---|
Fisher discriminant ratio, F1 | {} |
Volume of overlap region, F2 | {} |
Feature efficiency, F3 | {} |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jemal, I.; Mitiche, A.; Mezghani, N. A Study of EEG Feature Complexity in Epileptic Seizure Prediction. Appl. Sci. 2021, 11, 1579. https://doi.org/10.3390/app11041579
Jemal I, Mitiche A, Mezghani N. A Study of EEG Feature Complexity in Epileptic Seizure Prediction. Applied Sciences. 2021; 11(4):1579. https://doi.org/10.3390/app11041579
Chicago/Turabian StyleJemal, Imene, Amar Mitiche, and Neila Mezghani. 2021. "A Study of EEG Feature Complexity in Epileptic Seizure Prediction" Applied Sciences 11, no. 4: 1579. https://doi.org/10.3390/app11041579
APA StyleJemal, I., Mitiche, A., & Mezghani, N. (2021). A Study of EEG Feature Complexity in Epileptic Seizure Prediction. Applied Sciences, 11(4), 1579. https://doi.org/10.3390/app11041579