Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review
Abstract
:1. Introduction
2. Production of Nanoparticles by Using CO2 as a Solvent
- -
- Rapid expansion of supercritical solution (RESS);
- -
- Rapid expansion of supercritical solutions with solid co-solvent (RESS-SC);
- -
- Rapid expansion of a supercritical solution into a liquid solvent (RESOLV), which, if the water is used as the receiving solvent, is called rapid expansion of supercritical solution into aqueous solutions (RESSAS).
3. Production of Nanoparticles by Using CO2 as an Antisolvent
- -
- Aerosol solvent extraction system (ASES);
- -
- Supercritical gas antisolvent (GAS);
- -
- Precipitation with compressed fluid antisolvent (PCA);
- -
- Supercritical antisolvent precipitation (SAS);
- -
- Solution-enhanced dispersion by supercritical fluids (SEDS);
- -
- Supercritical fluid extraction of emulsions technology (SFEE).
4. Production of Nanoparticles by Using CO2 as a Co-Solute
- -
- Particles from gas-saturated solutions (PGSS);
- -
- Supercritical-assisted atomization (SAA);
- -
- Supercritical-assisted injection in a liquid antisolvent (SAILA).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franco, P.; De Marco, I. Supercritical antisolvent coprecipitation in the pharmaceutical field: Different polymeric carriers for different drug releases. Can. J. Chem. Eng. 2020, 98, 1935–1943. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Dhand, C.; Prabhakaran, M.P.; Beuerman, R.W.; Lakshminarayanan, R.; Dwivedi, N.; Ramakrishna, S. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. Rsc Adv. 2014, 4, 32673–32689. [Google Scholar] [CrossRef]
- Lipinski, C. Poor aqueous solubility—an industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82–85. [Google Scholar]
- Heimbach, T.; Fleisher, D.; Kaddoumi, A. Overcoming poor aqueous solubility of drugs for oral delivery. In Prodrugs; Springer: Berlin/Heidelberg, Germany, 2007; pp. 157–215. [Google Scholar]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. Isrn Pharm. 2012, 2012, 195727–195736. [Google Scholar] [CrossRef] [Green Version]
- Vieth, M.; Siegel, M.G.; Higgs, R.E.; Watson, I.A.; Robertson, D.H.; Savin, K.A.; Durst, G.L.; Hipskind, P.A. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem. 2004, 47, 224–232. [Google Scholar] [CrossRef]
- Rodriguez-Aller, M.; Guillarme, D.; Veuthey, J.-L.; Gurny, R. Strategies for formulating and delivering poorly water-soluble drugs. J. Drug Del. Sci.Tech. 2015, 30, 342–351. [Google Scholar] [CrossRef]
- Takagi, T.; Ramachandran, C.; Bermejo, M.; Yamashita, S.; Yu, L.X.; Amidon, G.L. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol. Pharm. 2006, 3, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-Y.; Chen, Z.-Y.; Huang, C.-L.; Huang, B.; Zheng, Y.-R.; Zhang, Y.-F.; Lu, B.-Y.; He, L.; Liu, C.-S.; Long, X.-Y. A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied. Int. J. Nanomed. 2020, 15, 6503. [Google Scholar] [CrossRef] [PubMed]
- S Darwich, A.; Neuhoff, S.; Jamei, M.; Rostami-Hodjegan, A. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: A simulation assessment using the “Advanced Dissolution, Absorption, Metabolism (ADAM)” model. Curr. Drug Metab. 2010, 11, 716–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids 2018, 138, 247–258. [Google Scholar] [CrossRef]
- Varde, N.K.; Pack, D.W. Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 2004, 4, 35–51. [Google Scholar] [CrossRef]
- Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020, 10, 7921. [Google Scholar] [CrossRef] [PubMed]
- Germain, M.; Caputo, F.; Metcalfe, S.; Tosi, G.; Spring, K.; Åslund, A.K.; Pottier, A.; Schiffelers, R.; Ceccaldi, A.; Schmid, R. Delivering the power of nanomedicine to patients today. J. Control. Release 2020, 326, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Amrutiya, J.; Bhatt, P.; Javia, A.; Jain, M.; Misra, A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J. Microencapsul. 2018, 35, 204–217. [Google Scholar] [CrossRef]
- Kim, B.Y.; Rutka, J.T.; Chan, W.C. Nanomedicine. N. Eng. J. Med. 2010, 363, 2434–2443. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.R.; Choo, Q.; Ashtikar, M.; Rocha, T.C.; Bremer-Hoffmann, S.; Wacker, M.G. Nanomedicines-Tiny particles and big challenges. Adv. Drug Deliv. Rev. 2019, 151, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Weissig, V.; Pettinger, T.K.; Murdock, N. Nanopharmaceuticals (part 1): Products on the market. Int. J. Nanomed. 2014, 9, 4357. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-W.; Kim, S.-J.; Youn, Y.-S.; Widjojokusumo, E.; Lee, Y.-H.; Kim, J.; Lee, Y.-W.; Tjandrawinata, R.R. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J. Supercrit. Fluids 2010, 55, 348–357. [Google Scholar] [CrossRef]
- Wu, K.; Li, J.; Wang, W.; Winstead, D.A. Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. J. Pharm. Sci. 2009, 98, 2422–2431. [Google Scholar] [CrossRef]
- Ha, E.-S.; Park, H.; Lee, S.-K.; Sim, W.-Y.; Jeong, J.-S.; Baek, I.-H.; Kim, M.-S. Pure Trans-Resveratrol Nanoparticles Prepared by A Supercritical Antisolvent Process Using Alcohol and Dichloromethane Mixtures: Effect of Particle Size on Dissolution and Bioavailability in Rats. Antioxidants 2020, 9, 342. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Park, H.J.; Cho, W.; Cha, K.-H.; Kang, Y.-S.; Hwang, S.-J. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process. Int. J. Pharm. 2010, 396, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Giufrida, W.M.; Cabral, V.F.; Cardoso-Filho, L.; dos Santos Conti, D.; de Campos, V.E.; da Rocha, S.R. Medroxyprogesterone-encapsulated poly (3-hydroxybutirate-co-3-hydroxyvalerate) nanoparticles using supercritical fluid extraction of emulsions. J. Supercrit. Fluids 2016, 118, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Shekunov, B.Y.; Chattopadhyay, P.; Seitzinger, J.; Huff, R. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res. 2006, 23, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Prieto, C.; Calvo, L. Supercritical fluid extraction of emulsions to nanoencapsulate vitamin E in polycaprolactone. J. Supercrit. Fluids 2017, 119, 274–282. [Google Scholar] [CrossRef]
- da Fonseca Machado, A.P.; Rezende, C.A.; Rodrigues, R.A.; Barbero, G.F.; e Rosa, P.d.T.V.; Martínez, J. Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technol. 2018, 340, 553–562. [Google Scholar] [CrossRef]
- Won, D.-H.; Kim, M.-S.; Lee, S.; Park, J.-S.; Hwang, S.-J. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 2005, 301, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Seo, H.J.; Hong, S.-h.; Ha, E.-S.; Lee, S.; Kim, J.-S.; Baek, I.-h.; Kim, M.-S.; Hwang, S.-J. Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: Influence of molar ratio and preparation methods. Int. J. Pharm. 2020, 119232. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.V.; Duarte, C.M. Dense CO2 as a solute, co-solute or co-solvent in particle formation processes: A review. Materials 2011, 4, 2017–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.K.; Pathak, K. Supercritical fluid technology for solubilization of poorly water soluble drugs via micro-and naonosized particle generation. ADMET DMPK 2020, 8, 355–374. [Google Scholar] [CrossRef]
- Van Konynenburg, P.; Scott, R. Critical lines and phase equilibria in binary van der Waals mixtures. Philos. Trans. R. Soc. London. Ser. Amathematical Phys. Sci. 1980, 298, 495–540. [Google Scholar]
- Raeissi, S.; Florusse, L.; Peters, C. Scott–van Konynenburg phase diagram of carbon dioxide+ alkylimidazolium-based ionic liquids. J. Supercrit. Fluids 2010, 55, 825–832. [Google Scholar] [CrossRef]
- De Diego, Y.P.; Wubbolts, F.; Witkamp, G.; De Loos, T.W.; Jansens, P.J. Measurements of the phase behaviour of the system dextran/DMSO/CO2 at high pressures. J. Supercrit. Fluids 2005, 35, 1–9. [Google Scholar] [CrossRef]
- Labuschagne, P.W.; Adami, R.; Liparoti, S.; Naidoo, S.; Swai, H.; Reverchon, E. Preparation of rifampicin/poly (d, l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique. J. Supercrit. Fluids 2014, 95, 106–117. [Google Scholar] [CrossRef]
- Hu, X.; Guo, Y.; Wang, L.; Hua, D.; Hong, Y.; Li, J. Coenzyme Q10 nanoparticles prepared by a supercritical fluid-based method. J. Supercrit. Fluids 2011, 57, 66–72. [Google Scholar] [CrossRef]
- Sharma, S.K.; Jagannathan, R. High throughput RESS processing of sub-10 nm ibuprofen nanoparticles. J. Supercrit. Fluids 2016, 109, 74–79. [Google Scholar] [CrossRef]
- Lee, S.; Nam, K.; Kim, M.S.; Jun, S.W.; Park, J.-S.; Woo, J.S.; Hwang, S.-J. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability. Arch. Pharmacal Res. 2005, 28, 866–874. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Shekunov, B.Y.; Yim, D.; Cipolla, D.; Boyd, B.; Farr, S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv. Drug Deliv. Rev. 2007, 59, 444–453. [Google Scholar] [CrossRef]
- Gadermann, M.; Kular, S.; Al-Marzouqi, A.H.; Signorell, R. Formation of naproxen–polylactic acid nanoparticles from supercritical solutions and their characterization in the aerosol phase. Phys. Chem. Chem. Phys. 2009, 11, 7861–7868. [Google Scholar] [CrossRef] [PubMed]
- Montes, A.; Gordillo, M.D.; Pereyra, C.; De los Santos, D.M.; Martínez de la Ossa, E.J. Ibuprofen–polymer precipitation using supercritical CO2 at low temperature. J. Supercrit. Fluids 2014, 94, 91–101. [Google Scholar] [CrossRef]
- Nerome, H.; Machmudah, S.; Fukuzato, R.; Higashiura, T.; Youn, Y.S.; Lee, Y.W.; Goto, M. Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J. Supercrit. Fluids 2013, 83, 97–103. [Google Scholar] [CrossRef]
- Prosapio, V.; Reverchon, E.; De Marco, I. Coprecipitation of Polyvinylpyrrolidone/β-Carotene by Supercritical Antisolvent Processing. Ind. Eng. Chem. Res. 2015, 54, 11568–11575. [Google Scholar] [CrossRef]
- Bhatt, P.; Trehan, S.; Inamdar, N.; Mourya, V.K.; Misra, A. Polymers in Drug Delivery: An Update. In Applications of Polymers in Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–42. [Google Scholar]
- Sodeifian, G.; Sajadian, S.A.; Ardestani, N.S.; Razmimanesh, F. Production of Loratadine drug nanoparticles using ultrasonic-assisted Rapid expansion of supercritical solution into aqueous solution (US-RESSAS). J. Supercrit. Fluids 2019, 147, 241–253. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A. Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: Optimization of the process parameters. Chem. Eng. Res. Des. 2019, 142, 268–284. [Google Scholar] [CrossRef]
- Herrmann, M.; Förter-Barth, U.; Kröber, H.; Kempa, P.B.; Juez-Lorenzo, M.d.M.; Doyle, S. Co-Crystallization and Characterization of Pharmaceutical Ingredients. Part. Part. Syst. Charact. 2009, 26, 151–156. [Google Scholar] [CrossRef]
- Hermsdorf, D.; Jauer, S.; Signorell, R. Formation and stabilization of ibuprofen nanoparticles by pulsed rapid expansion of supercritical solutions. Mol. Phys. 2007, 105, 951–959. [Google Scholar] [CrossRef]
- Tuerk, M.; Bolten, D. Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). J. Supercrit. Fluids 2016, 116, 239–250. [Google Scholar] [CrossRef]
- Keshavarz, A.; Karimi-Sabet, J.; Fattahi, A.; Golzary, A.; Rafiee-Tehrani, M.; Dorkoosh, F.A. Preparation and characterization of raloxifene nanoparticles using rapid expansion of supercritical solution (RESS). J. Supercrit. Fluids 2012, 63, 169–179. [Google Scholar] [CrossRef]
- Paisana, M.C.; Müllers, K.C.; Wahl, M.A.; Pinto, J.F. Production and stabilization of olanzapine nanoparticles by rapid expansion of supercritical solutions (RESS). J. Supercrit. Fluids 2016, 109, 124–133. [Google Scholar] [CrossRef]
- Yekefallah, M.; Raofie, F. Preparation of potent antioxidant nanosuspensions from olive leaves by Rapid expansion of supercritical solution into aqueous solutions (RESSAS). Ind. Crop. Prod. 2020, 155, 112756. [Google Scholar] [CrossRef]
- Pathak, P.; Meziani, M.J.; Desai, T.; Sun, Y.-P. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J. Supercrit. Fluids 2006, 37, 279–286. [Google Scholar] [CrossRef]
- Pathak, P.; Prasad, G.L.; Meziani, M.J.; Joudeh, A.A.; Sun, Y.-P. Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation. Langmuir 2007, 23, 2674–2679. [Google Scholar] [CrossRef] [PubMed]
- Sane, A.; Limtrakul, J. Formation of retinyl palmitate-loaded poly (l-lactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV). J. Supercrit. Fluids 2009, 51, 230–237. [Google Scholar] [CrossRef]
- Atila, C.; Yıldız, N.; Çalımlı, A. Particle size design of digitoxin in supercritical fluids. J. Supercrit. Fluids 2010, 51, 404–411. [Google Scholar] [CrossRef]
- Montes, A.; Bendel, A.; Kürti, R.; Gordillo, M.; Pereyra, C.; de La Ossa, E.M. Processing naproxen with supercritical CO2. J. Supercrit. Fluids 2013, 75, 21–29. [Google Scholar] [CrossRef]
- Pathak, P.; Meziani, M.J.; Desai, T.; Foster, C.; Diaz, J.A.; Sun, Y.-P. Supercritical fluid processing of drug nanoparticles in stable suspension. J. Nanosci. Nanotechnol. 2007, 7, 2542–2545. [Google Scholar] [CrossRef]
- Pathak, P.; Meziani, M.J.; Desai, T.; Sun, Y.-P. Nanosizing drug particles in supercritical fluid processing. J. Am. Chem. Soc. 2004, 126, 10842–10843. [Google Scholar] [CrossRef]
- Thakur, R.; Gupta, R.B. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Int. J. Pharm. 2006, 308, 190–199. [Google Scholar] [CrossRef]
- Rostamian, H.; Lotfollahi, M.N. Production and characterization of ultrafine aspirin particles by rapid expansion of supercritical solution with solid co-solvent (RESS-SC): Expansion parameters effects. Part. Sci. Technol. 2019, 38, 617–625. [Google Scholar] [CrossRef]
- Pourasghar, M.; Fatemi, S.; Vatanara, A.; Najafabadi, A.R. Production of ultrafine drug particles through rapid expansion of supercritical solution; a statistical approach. Powder Technol. 2012, 225, 21–26. [Google Scholar] [CrossRef]
- Samei, M.; Vatanara, A.; Fatemi, S.; Najafabadi, A.R. Process variables in the formation of nanoparticles of megestrol acetate through rapid expansion of supercritical CO2. J. Supercrit. Fluids 2012, 70, 1–7. [Google Scholar] [CrossRef]
- Uchida, H.; Nishijima, M.; Sano, K.; Demoto, K.; Sakabe, J.; Shimoyama, Y. Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. J. Supercrit. Fluids 2015, 105, 128–135. [Google Scholar] [CrossRef]
- Hielscher, K. Ultrasonic milling and dispersing technology for nano-particles. Mater. Res. Soc. Symp. Proc. 2012, 1479, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Yasui, K. Acoustic Cavitation and Bubble Dynamics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Santos, D.T.; Santana, Á.L.; Meireles, M.A.A.; Petenate, A.J.; Silva, E.K.; Albarelli, J.Q.; Johner, J.C.; Gomes, M.T.M.; Torres, R.A.D.C.; Hatami, T. Economical Effects of Supercritical Antisolvent Precipitation Process Conditions. In Supercritical Antisolvent Precipitation Process; Springer: Berlin/Heidelberg, Germany, 2019; pp. 75–82. [Google Scholar]
- Asghari, I.; Esmaeilzadeh, F. Formation of ultrafine deferasirox particles via rapid expansion of supercritical solution (RESS process) using Taguchi approach. Int. J. Pharm. 2012, 433, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Raofie, F. Micronization of vincristine extracted from Catharanthus roseus by expansion of supercritical fluid solution. J. Supercrit. Fluids 2019, 146, 172–179. [Google Scholar] [CrossRef]
- Elizondo, E.; Sala, S.; Imbuluzqueta, E.; González, D.; Blanco-Prieto, M.J.; Gamazo, C.; Ventosa, N.; Veciana, J. High loading of gentamicin in bioadhesive PVM/MA nanostructured microparticles using compressed carbon-dioxide. Pharm. Res. 2011, 28, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.J.; Son, W.-S.; Park, H.J.; Seo, B.; Kim, T.; Lee, Y.-W. Tetracycline nanoparticles precipitation using supercritical and liquid CO2 as antisolvents. J. Supercrit. Fluids 2016, 107, 51–60. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Zu, Y.; Jiang, R.; Zhao, D. Recrystallization and micronization of taxol using the supercritical antisolvent (SAS) process. Ind. Eng. Chem. Res. 2012, 51, 9591–9597. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Liu, D.; Gao, Y.; Qian, S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur. J. Pharm. Sci. 2013, 48, 740–747. [Google Scholar] [CrossRef]
- Zhao, X.; Zu, Y.; Li, Q.; Wang, M.; Zu, B.; Zhang, X.; Jiang, R.; Zu, C. Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process. J. Supercrit. Fluids 2010, 51, 412–419. [Google Scholar] [CrossRef]
- Widjojokusumo, E.; Veriansyah, B.; Tjandrawinata, R.R. Supercritical anti-solvent (SAS) micronization of Manilkara kauki bioactive fraction (DLBS2347). J. CO2 Util. 2013, 3-4, 30–36. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Zu, Y.; Li, C.; Liu, S.; Yang, L.; Zhao, X.; Zu, B. Micronization of Ginkgo biloba extract using supercritical antisolvent process. Powder Technol. 2011, 209, 73–80. [Google Scholar] [CrossRef]
- Zhao, X.; Zu, Y.; Jiang, R.; Wang, Y.; Li, Y.; Li, Q.; Zhao, D.; Zu, B.; Zhang, B.; Sun, Z. Preparation and physicochemical properties of 10-hydroxycamptothecin (HCPT) nanoparticles by supercritical antisolvent (SAS) process. Int. J. Mol. Sci. 2011, 12, 2678–2691. [Google Scholar] [CrossRef] [PubMed]
- Montes, A.; Wehner, L.; Pereyra, C.; Martínez de la Ossa, E.J. Mangiferin nanoparticles precipitation by supercritical antisolvent process. J. Supercrit. Fluids 2016, 112, 44–50. [Google Scholar] [CrossRef]
- Zu, Y.; Zhang, Q.; Zhao, X.; Wang, D.; Li, W.; Sui, X.; Zhang, Y.; Jiang, S.; Wang, Q.; Gu, C. Preparation and characterization of vitexin powder micronized by a supercritical antisolvent (SAS) process. Powder Technol. 2012, 228, 47–55. [Google Scholar] [CrossRef]
- Djerafi, R.; Swanepoel, A.; Crampon, C.; Kalombo, L.; Labuschagne, P.; Badens, E.; Masmoudi, Y. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose. Eur. J. Pharm. Sci. 2017, 102, 161–171. [Google Scholar] [CrossRef]
- Franco, P.; Reverchon, E.; De Marco, I. Zein/diclofenac sodium coprecipitation at micrometric and nanometric range by supercritical antisolvent processing. J. CO2 Util. 2018, 27, 366–373. [Google Scholar] [CrossRef]
- Zahran, F.; Cabañas, A.; Cheda, J.A.R.; Renuncio, J.A.R.; Pando, C. Dissolution rate enhancement of the anti-inflammatory drug diflunisal by coprecipitation with a biocompatible polymer using carbon dioxide as a supercritical fluid antisolvent. J. Supercrit. Fluids 2014, 88, 56–65. [Google Scholar] [CrossRef]
- Muhrer, G.; Mazzotti, M. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent. Biotechnol. Progr. 2003, 19, 549–556. [Google Scholar] [CrossRef]
- Fusaro, F.; Kluge, J.; Mazzotti, M.; Muhrer, G. Compressed CO2 antisolvent precipitation of lysozyme. J. Supercrit. Fluids 2009, 49, 79–92. [Google Scholar] [CrossRef]
- Akbari, I.; Ghoreishi, S.; Habibi, N. Generation and precipitation of paclitaxel nanoparticles in basil seed mucilage via combination of supercritical gas antisolvent and phase inversion techniques. J. Supercrit. Fluids 2014, 94, 182–188. [Google Scholar] [CrossRef]
- Park, H.J.; Yoon, T.J.; Kwon, D.E.; Yu, K.; Lee, Y.-W. Coprecipitation of hydrochlorothiazide/PVP for the dissolution rate improvement by precipitation with compressed fluid antisolvent process. J. Supercrit. Fluids 2017, 126, 37–46. [Google Scholar] [CrossRef]
- Ha, E.-S.; Sim, W.-Y.; Lee, S.-K.; Jeong, J.-S.; Kim, J.-S.; Baek, I.-h.; Choi, D.H.; Park, H.; Hwang, S.-J.; Kim, M.-S. Preparation and evaluation of resveratrol-loaded composite nanoparticles using a supercritical fluid technology for enhanced oral and skin delivery. Antioxidants 2019, 8, 554. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.Y.; Xia, F.; Zhao, Y.P. Preparation of hydroxypropyl methyl cellulose phthalate nanoparticles with mixed solvent using supercritical antisolvent process and its application in co-precipitation of insulin. Adv. Powder Technol. 2012, 23, 157–163. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Supercritical Antisolvent Process for Pharmaceutical Applications: A Review. Processes 2020, 8, 938. [Google Scholar] [CrossRef]
- Franco, P.; Reverchon, E.; De Marco, I. Production of zein/antibiotic microparticles by supercritical antisolvent coprecipitation. J. Supercrit. Fluids 2019, 145, 31–38. [Google Scholar] [CrossRef]
- Kim, M.-S.; Jin, S.-J.; Kim, J.-S.; Park, H.J.; Song, H.-S.; Neubert, R.H.; Hwang, S.-J. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2008, 69, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.-S.; Kim, J.-S.; Baek, I.-h.; Hwang, S.-J.; Kim, M.-S. Enhancement of dissolution and bioavailability of ezetimibe by amorphous solid dispersion nanoparticles fabricated using supercritical antisolvent process. J. Pharm. Investig. 2015, 45, 641–649. [Google Scholar] [CrossRef]
- Matos, R.L.; Lu, T.; Prosapio, V.; McConville, C.; Leeke, G.; Ingram, A. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J. CO2 Util. 2019, 30, 48–62. [Google Scholar] [CrossRef]
- Chen, L.-F.; Xu, P.-Y.; Fu, C.-P.; Kankala, R.K.; Chen, A.-Z.; Wang, S.-B. Fabrication of Supercritical Antisolvent (SAS) Process-Assisted Fisetin-Encapsulated Poly (Vinyl Pyrrolidone)(PVP) Nanocomposites for Improved Anticancer Therapy. Nanomaterials 2020, 10, 322. [Google Scholar] [CrossRef] [Green Version]
- Chhouk, K.; Kanda, H.; Kawasaki, S.-I.; Goto, M. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front. Chem. Sci. Eng. 2018, 12, 184–193. [Google Scholar] [CrossRef]
- Lestari, S.D.; Machmudah, S.; Winardi, S.; Kanda, H.; Goto, M. Particle micronization of Curcuma mangga rhizomes ethanolic extract/biopolymer PVP using supercritical antisolvent process. J. Supercrit. Fluids 2019, 146, 226–239. [Google Scholar] [CrossRef]
- Prosapio, V.; De Marco, I.; Scognamiglio, M.; Reverchon, E. Folic acid–PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chem. Eng. J. 2015, 277, 286–294. [Google Scholar] [CrossRef]
- Ha, E.-S.; Choo, G.-H.; Baek, I.-H.; Kim, J.-S.; Cho, W.; Jung, Y.S.; Jin, S.-E.; Hwang, S.-J.; Kim, M.-S. Dissolution and bioavailability of lercanidipine–hydroxypropylmethyl cellulose nanoparticles with surfactant. Int. J. Biol. Macromol. 2015, 72, 218–222. [Google Scholar] [CrossRef]
- Fernández-Ponce, M.T.; Masmoudi, Y.; Djerafi, R.; Casas, L.; Mantell, C.; de La Ossa, E.M.; Badens, E. Particle design applied to quercetin using supercritical anti-solvent techniques. J. Supercrit. Fluids 2015, 105, 119–127. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Gupta, R.B. Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int. J. Pharm. 2001, 228, 19–31. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Gupta, R.B. Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Ind. Eng. Chem. Res. 2001, 40, 3530–3539. [Google Scholar] [CrossRef]
- Long, B.; Walker, G.M.; Ryan, K.M.; Padrela, L. Controlling Polymorphism of Carbamazepine Nanoparticles in a Continuous Supercritical-CO2-Assisted Spray Drying Process. Cryst. Growth Des. 2019, 19, 3755–3767. [Google Scholar] [CrossRef]
- Chen, A.-Z.; Li, Y.; Chau, F.-T.; Lau, T.-Y.; Hu, J.-Y.; Zhao, Z.; Mok, D.K.-W. Microencapsulation of puerarin nanoparticles by poly (L-lactide) in a supercritical CO2 process. Acta Biomater. 2009, 5, 2913–2919. [Google Scholar] [CrossRef]
- Kaga, K.; Honda, M.; Adachi, T.; Honjo, M.; Kanda, H.; Goto, M. Nanoparticle formation of PVP/astaxanthin inclusion complex by solution-enhanced dispersion by supercritical fluids (SEDS): Effect of PVP and astaxanthin Z-isomer content. J. Supercrit. Fluids 2018, 136, 44–51. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Mechanisms controlling supercritical antisolvent precipitate morphology. Chem. Eng. J. 2011, 169, 358–370. [Google Scholar] [CrossRef]
- Marra, F.; De Marco, I.; Reverchon, E. Numerical analysis of the characteristic times controlling supercritical antisolvent micronization. Chem. Eng. Sci. 2012, 71, 39–45. [Google Scholar] [CrossRef]
- Lengsfeld, C.S.; Delplanque, J.P.; Barocas, V.H.; Randolph, T.W. Mechanism Governing Microparticle Morphology during Precipitation by a Compressed Antisolvent: Atomization vs Nucleation and Growth. J. Phys. Chem. B 2000, 104, 2725–2735. [Google Scholar] [CrossRef]
- De Marco, I.; Knauer, O.; Cice, F.; Braeuer, A.; Reverchon, E. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: The influence of solvents. Chem. Eng. J. 2012, 203, 71–80. [Google Scholar] [CrossRef]
- Reverchon, E.; Torino, E.; Dowy, S.; Braeuer, A.; Leipertz, A. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization. Chem. Eng. J. 2010, 156, 446–458. [Google Scholar] [CrossRef]
- Prieto, C.; Calvo, L. The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. J. Supercrit. Fluids 2017, 128, 227–234. [Google Scholar] [CrossRef]
- Lévai, G.; Martín, Á.; de Paz, E.; Rodríguez-Rojo, S.; Cocero, M.J. Production of stabilized quercetin aqueous suspensions by supercritical fluid extraction of emulsions. J. Supercrit. Fluids 2015, 100, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Kurniawansyah, F.; Mammucari, R.; Tandya, A.; Foster, N.R. Scale− Up and economic evaluation of the atomized rapid injection solvent extraction process. J. Supercrit. Fluids 2017, 127, 208–216. [Google Scholar] [CrossRef]
- Rosa, M.T.M.G.; Alvarez, V.H.; Albarelli, J.Q.; Santos, D.T.; Meireles, M.A.A.; Saldaña, M.D.A. Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation. J. Supercrit. Fluids 2019. [Google Scholar] [CrossRef]
- Weber, A.; Tschernjaew, J.; Berger, T.; Bork, M. A production plant for gas antisolvent crystallization. In Proceedings of the 5th Meeting on Supercritical Fluids, Nice, France, 23–25 March 1998; pp. 281–285. [Google Scholar]
- Esfandiari, N.; Ghoreishi, S.M. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process. Aaps Pharmscitech 2015, 16, 1263–1269. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Song, H.S.; Park, H.J.; Hwang, S.J. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process. Chem. Pharm. Bull. 2012, 60, 543–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.Y.; Fu, C.P.; Kankala, R.K.; Wang, S.B.; Chen, A.Z. Supercritical carbon dioxide-assisted nanonization of dihydromyricetin for anticancer and bacterial biofilm inhibition efficacies. J. Supercrit. Fluids 2020, 161. [Google Scholar] [CrossRef]
- Adami, R.; Reverchon, E.; Järvenpää, E.; Huopalahti, R. Supercritical AntiSolvent micronization of nalmefene HCl on laboratory and pilot scale. Powder Technol. 2008, 182, 105–112. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Z.; Zu, Y.; Zhao, C.; Sun, X.; Zhang, Z.; Zhang, L. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process. Food Chem. 2012, 132, 319–325. [Google Scholar] [CrossRef]
- Vallejo, R.; Gonzalez-Valdivieso, J.; Santos, M.; Rodriguez-Rojo, S.; Arias, F.J. Production of elastin-like recombinamer-based nanoparticles for docetaxel encapsulation and use as smart drug-delivery systems using a supercritical anti-solvent process. J. Ind. Eng. Chem. 2021, 93, 361–374. [Google Scholar] [CrossRef]
- Fu, C.; Wei, R.; Xu, P.; Luo, S.; Zhang, C.; Kankala, R.K.; Wang, S.; Jiang, X.; Wei, X.; Zhang, L.; et al. Supercritical fluid-assisted fabrication of diselenide-bridged polymeric composites for improved indocyanine green-guided photodynamic therapy. Chem. Eng. J. 2021, 407. [Google Scholar] [CrossRef]
- Ha, E.S.; Choo, G.H.; Baek, I.H.; Kim, M.S. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical antisolvent process. Molecules 2014, 19, 20325–20339. [Google Scholar] [CrossRef] [Green Version]
- Matos, R.L.; Lu, T.; Leeke, G.; Prosapio, V.; McConville, C.; Ingram, A. Single-step coprecipitation and coating to prepare curcumin formulations by supercritical fluid technology. J. Supercrit. Fluids 2020, 159. [Google Scholar] [CrossRef]
- Ha, E.S.; Kim, J.S.; Baek, I.H.; Yoo, J.W.; Jung, Y.; Moon, H.R.; Kim, M.S. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process. Drug Des. Dev. Ther. 2015, 9, 4269–4277. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Wang, F.; Guo, Z.; Zhao, Y. Preparation and characterization of resveratrol/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent technology. J. Food Process Eng. 2012, 35, 677–686. [Google Scholar] [CrossRef]
- Adeli, E. The use of supercritical anti-solvent (SAS) technique for preparation of Irbesartan-Pluronic® F-127 nanoparticles to improve the drug dissolution. Powder Technol. 2016, 298, 65–72. [Google Scholar] [CrossRef]
- Junior, O.V.; Cardoso, F.A.R.; Giufrida, W.M.; de Souza, M.F.; Cardozo-Filho, L. Production and computational fluid dynamics-based modeling of PMMA nanoparticles impregnated with ivermectin by a supercritical antisolvent process. J. CO2 Util. 2020, 35, 47–58. [Google Scholar] [CrossRef]
- Saad, S.; Ahmad, I.; Kawish, S.M.; Khan, U.A.; Ahmad, F.J.; Ali, A.; Jain, G.K. Improved cardioprotective effects of hesperidin solid lipid nanoparticles prepared by supercritical antisolvent technology. Colloids Surf. B 2020, 187, 110628. [Google Scholar] [CrossRef] [PubMed]
- Tirado, D.F.; Latini, A.; Calvo, L. The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. J. Food Eng. 2021, 290. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Hong, Y.; Su, Y.; Wang, H.; Li, J. Ibuprofen nanoparticles prepared by a PGSS™-based method. Powder Technol. 2013, 245, 241–250. [Google Scholar] [CrossRef]
- Couto, R.; Alvarez, V.; Temelli, F. Encapsulation of Vitamin B2 in solid lipid nanoparticles using supercritical CO2. J. Supercrit. Fluids 2017, 120, 432–442. [Google Scholar] [CrossRef]
- Reverchon, E.; Spada, A. Erythromycin micro-particles produced by supercritical fluid atomization. Powder Technol. 2004, 141, 100–108. [Google Scholar] [CrossRef]
- Kikic, I.; Vecchione, F. Supercritical impregnation of polymers. Curr. Opin. Solid State Mater. Sci. 2003, 7, 399–405. [Google Scholar] [CrossRef]
- Lian, Z.; Epstein, S.A.; Blenk, C.W.; Shine, A.D. Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers. J. Supercrit. Fluids 2006, 39, 107–117. [Google Scholar] [CrossRef]
- Wu, H.-T.; Chen, H.-C.; Lee, H.-K. Controlled release of theophylline-chitosan composite particles prepared using supercritical assisted atomization. Braz. J. Chem. Eng. 2019, 36, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-T.; Yang, C.-P.; Huang, S.-C. Dissolution enhancement of indomethacin-chitosan hydrochloride composite particles produced using supercritical assisted atomization. J. Taiwan Inst. Chem. Eng. 2016, 67, 98–105. [Google Scholar] [CrossRef]
- Wu, H.-T.; Yang, M.-W. Precipitation kinetics of PMMA sub-micrometric particles with a supercritical assisted-atomization process. J. Supercrit. Fluids 2011, 59, 98–107. [Google Scholar] [CrossRef]
- Reverchon, E.; Della Porta, G. Micronization of antibiotics by supercritical assisted atomization. J. Supercrit. Fluids 2003, 26, 243–252. [Google Scholar] [CrossRef]
- Peng, H.-H.; Hong, D.-X.; Guan, Y.-X.; Yao, S.-J. Preparation of pH-responsive DOX-loaded chitosan nanoparticles using supercritical assisted atomization with an enhanced mixer. Int. J. Pharm. 2019, 558, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, E.; Antonacci, A. Polymer microparticles production by supercritical assisted atomization. J. Supercrit. Fluids 2007, 39, 444–452. [Google Scholar] [CrossRef]
- Wu, H.-T.; Tsai, H.-M.; Li, T.-H. Formation of Polyethylene Glycol Particles Using a Low-Temperature Supercritical Assisted Atomization Process. Molecules 2019, 24, 2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, M.-Q.; Guan, Y.-X.; Yao, S.-J.; Zhu, Z.-Q. Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for micronization of levofloxacin hydrochloride. J. Supercrit. Fluids 2008, 43, 524–534. [Google Scholar] [CrossRef]
- Hong, D.-X.; Yun, Y.-L.; Guan, Y.-X.; Yao, S.-J. Preparation of micrometric powders of parathyroid hormone (PTH1–34)-loaded chitosan oligosaccharide by supercritical fluid assisted atomization. Int. J. Pharm. 2018, 545, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-B.; Du, Z.; Tang, C.; Guan, Y.-X.; Yao, S.-J. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int. J. Pharm. 2016, 505, 223–233. [Google Scholar] [CrossRef]
- Campardelli, R.; Reverchon, E. Instantaneous coprecipitation of polymer/drug microparticles using the supercritical assisted injection in a liquid antisolvent. J. Supercrit. Fluids 2017, 120, 151–160. [Google Scholar] [CrossRef]
- Campardelli, R.; Adami, R.; Della Porta, G.; Reverchon, E. Nanoparticle precipitation by Supercritical Assisted Injection in a Liquid Antisolvent. Chem. Eng. J. 2012, 192, 246–251. [Google Scholar] [CrossRef]
- Campardelli, R.; Adami, R.; Reverchon, E. Preparation of stable aqueous nanodispersions of β-carotene by supercritical assisted injection in a liquid antisolvent C3—Procedia Engineering. Procedia Eng. 2012, 42, 1493–1501. [Google Scholar] [CrossRef] [Green Version]
- Campardelli, R.; Oleandro, E.; Adami, R.; Reverchon, E. Polymethylmethacrylate (PMMA) sub-microparticles produced by Supercritical Assisted Injection in a Liquid Antisolvent. J. Supercrit. Fluids 2014, 92, 93–99. [Google Scholar] [CrossRef]
- Campardelli, R.; Oleandro, E.; Reverchon, E. Supercritical assisted injection in a liquid antisolvent for PLGA and PLA microparticle production. Powder Technol. 2016, 287, 12–19. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J. Supercrit. Fluids 2019, 143, 16–23. [Google Scholar] [CrossRef]
- Campardelli, R.; Reverchon, E. α-Tocopherol nanosuspensions produced using a supercritical assisted process. J. Food Eng. 2015, 149, 131–136. [Google Scholar] [CrossRef]
- Palazzo, I.; Campardelli, R.; Scognamiglio, M.; Reverchon, E. Zein/luteolin microparticles formation using a supercritical fluids assisted technique. Powder Technol. 2019, 356, 899–908. [Google Scholar] [CrossRef]
- Palazzo, I.; Trucillo, P.; Campardelli, R.; Reverchon, E. Antioxidants entrapment in polycaprolactone microparticles using supercritical assisted injection in a liquid antisolvent. Food Bioprod. Process. 2020, 123, 312–321. [Google Scholar] [CrossRef]
- Tandya, A.; Dehghani, F.; Foster, N.R. Micronization of cyclosporine using dense gas techniques. J. Supercrit. Fluids 2006, 37, 272–278. [Google Scholar] [CrossRef]
- Salmaso, S.; Bersani, S.; Elvassore, N.; Bertucco, A.; Caliceti, P. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation. Int. J. Pharm. 2009, 379, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.A.; Li, J.; Padrela, L.; Almeida, A.; Matos, H.A.; de Azevedo, E.G. Anti-solvent effect in the production of lysozyme nanoparticles by supercritical fluid-assisted atomization processes. J. Supercrit. Fluids 2009, 48, 253–260. [Google Scholar] [CrossRef]
Technique | Active Compound | Polymer | Co- Solvent | Operating Conditions | Morphology | Reference |
---|---|---|---|---|---|---|
RESS | Cholesterol, Caffeine | - | - | - | NC (81–169 nm) | [48] |
RESS | Deferasirox | - | AC | TEXT = 35–45 °C, PEXT = 14–20 MPa | NP (50 nm) | [69] |
RESS | Digitoxin | - | EtOH | TPREEX = 90–110 °C; TEXT = 45 °C, PEXT = 10 MPa | NP (91–255 nm) | [57] |
RESS | Ibuprofen | - | - | TPREEX = 25–87 °C, PPREEX = 20–40 MPa | AGG, NC | [49] |
RESS | Ibuprofen | PVP, PEI | - | TEXT = 40 °C, PEXT = 12.5–32.5 MPa | NP (< 100 nm) | [38] |
RESS | Mefenamic acid | TPREEX = 60–110 °C, PPREEX = 15–30 MPa; TEXT = 55 °C | NC + NP (80–160 nm) | [50] | ||
RESS | Naproxen | PLA | - | TPREEX = 40–70 °C, PPREEX = 40 MPa | AGG, NC (144–268 nm) | [41] |
RESS | Naproxen | - | MeOH | TPREEX = 60–100 °C; TEXT = 45–100 °C, PEXT = 15–30 MPa | cNP, NP (60–220 nm) | [58] |
RESS | Raloxifene | - | - | TPREEX = 100 °C; TEXT = 40–80 °C, PEXT = 10–18 MPa | NP (18–137 nm) | [51] |
RESS | Vincristine | - | - | PPREEX = 35 MPa TEXT = 45–50 °C PEXT = 12 MPa | NP (5–200 nm) | [70] |
RESS, RESS-SC | Phenytoin | - | menthol with RESS-SC | TPREEX = 45 °C, PPREEX = 9.6/19.6 MPa | NP (105–200 nm with RESS; 75–120 with RESS-SC) | [61] |
RESS-SC | Aspirin | - | menthol | TEXT = 35 °C, PEXT = 7.3–8.5 MPa; TPREEX = 30–70 °C; PEXP = 0.1–0.8 MPa | NC, cNP | [62] |
RESS-SC | Lynestrenol | - | menthol | TPREEX = 45–60 °C, PPREEX = 15 to 30 MPa | NC (58–216 nm) | [63] |
RESS-SC | Megestrol acetate | menthol | TEXT = 40–60 °C, PEXT = 20–25 MPa | NP, cNP (102–268 nm) | [64] | |
RESS-SC | Theophylline | - | menthol, vanillin | TPREEX = 40–65 °C | AGG with menthol; NP with vanillin (85–90 nm) | [65] |
RESS, RESOLV/RESSAS | Olanzapine | PEG, HPMC, polysorbate | - | TEXP = 39–42 °C | NP (191 nm) | [52] |
RESOLV/RESSAS | α- tocopherol, β- amyrin | - | - | TEXT = 35–65 °C, PEXT = 20–25 MPa | AGG (200 nm) | [53] |
RESOLV/RESSAS | Amphotericin B | PVA | DMSO, MeOH | TPREEX = 40 °C, PPREEX = 31 MPa | NC, NP (39–225 nm) | [59] |
RESOLV/RESSAS | Ibuprofen | BSA, PEG, PVA, PVP | - | TPREEX = 40 °C, PPREEX = 20 MPa | NC, NP (25–276 nm) | [54] |
RESOLV/RESSAS | Naproxen, Ibuprofen | PVP, SDS | MeOH | TPREEX = 40 °C, PPREEX = 20 MPa | NP, cNP ( < 100 nm) | [60] |
RESOLV/RESSAS | Paclitaxel | PVP | - | TPREEX = 40 °C, PPREEX = 31 MPa | NP (38–200 nm) | [55] |
RESOLV/RESSAS | Retinyl palmitate | PLLA, Pluronic F127 or F68, SDS | - | TPREEX = 70–100 °C, PPREEX = 27.5–33 MPa | NP (30–160 nm) | [56] |
RESOLV, US- RESOLV | Loratidine | - | - | TEXT = 35–65 °C, PEXT = 12–30 MPa | NC, NP (124 nm with RESOLV; 26 nm with US-RESOLV) | [46] |
RESS, RESOLV, US-RESOLV | AH | PVP, HPMC | - | TEXT = 35–65 °C, PEXT = 12–27 MPa | AGG, cNP (101–393 nm with RESS, 51–265 nm with RESOLV, 48–255 nm with US-RESOLV) | [47] |
Technique | Active Compound | Polymer | Solvent | Operating Conditions | Morphology | Reference |
---|---|---|---|---|---|---|
ASES | Itraconazole | HPMC | EtOH/ DCM | P = 12–15 MPa; T = 45–60 °C | NP | [39] |
GAS | Ampicillin | - | DMSO | P = 9–15 MPa T = 34–46 °C | NP (220–430 nm) | [116] |
GAS | Lysozyme | - | DMSO | T = 19–35 °C | cNP (180–300 nm) | [84] |
GAS | Paclitaxel | - | DMSO/H2O | P = 10–16 MPa; T = 50 °C | NP (117–200 nm) | [86] |
GAS, PCA | Lysozyme | - | DMSO | P = 8–15 MPa; T = 25–50 °C | NP, cNP (233–300 nm with GAS; 18–197 nm with PCA) | [85] |
PCA | Gentamicin | PVM/MA | AC | P = 10 MPa; T = 25 °C | NP, cNP (37–265 nm) | [71] |
PCA | Hydrochlorothiazide | PVP | DMSO, DMSO/AC | P = 8.6–19 MPa; T = 30–40 °C | NP, cNP (52–206 nm) | [87] |
PCA | Tetracycline hydrochloride | - | DMF | P = 10–20 MPa; T = 5–50 °C | NP, cNP (100 nm) | [72] |
SAS | Atorvastatin | - | MeOH | P= 10–18 MPa; T = 40–50 °C | NP (150–260 nm) | [92] |
SAS | Atorvastatin calcium | - | AC | P = 12 MPa; T = 40 °C | NP (63–180 nm) | [117] |
SAS | Apigenin | - | DMSO | P = 14.5 MPa; T = 35 °C | NC | [74] |
SAS | Camptothecin | - | DMSO | P = 10–25 MPa; T = 35–68 °C | cNP | [75] |
SAS | Cefdinir | - | MeOH | P = 12 MPa; T = 45 °C | NP (150 nm) | [24] |
SAS | Diclofenac sodium | - | DMSO | P = 9 MPa; T= 40 °C | NP (140 nm) | [82] |
SAS | Dihydromyricetin | - | AC/DCM | P = 8 MPa T = 45 °C | NP (170 nm) | [118] |
SAS | Manilkara kauki L. Dubard’s leaf extract | - | DMSO, EtOH, MeOH, EtAc, AC, DCM | P = 8–20 MPa; T = 40–60 °C | NP, AGG | [76] |
SAS | Ginkgo biloba extract | - | EtOH | P = 10–40 MPa; T = 35–80 °C | NP (100–200 nm) | [77] |
SAS | 10-Hydroxycamptothecin | - | DMSO | P = 10–25 MPa; T = 35–68 °C | NP (180 nm) | [78] |
SAS | Mangiferin | - | DMSO, AC, NMP, DMSO/AC, DMSO/EtOH, NMP/AC, NMP/EtOH | P = 8–15 MPa; T = 40–50 °C | NP | [79] |
SAS | Nalmefene HCl | - | EtOH | P = 13 MPa; T = 58 °C | NP | [119] |
SAS | Naproxen | - | AC | P = 12 MPa; T = 40 °C | NP (80 nm) | [58] |
SAS | Resveratrol | - | MeOH/DMC, EtOH/DMC | P = 15 MPa; T = 40 °C | NP, cNP (151–209 nm) | [23] |
SAS | Taxol | - | EtOH | P = 10–20 MPa; T = 57 °C | NP (200 nm) | [73] |
SAS | Ursolic acid | - | EtOH | P = 12.5 MPa; T = 65° C | NP (139 nm) | [120] |
SAS | Vitexin | - | DMSO | P = 15–30 MPa; T = 40–70 °C | NP (130 nm) | [80] |
SAS | Docetaxel | Elastin-like recombinamer | DMSO | P = 9.5–11 MPa; T = 35 °C | NP | [121] |
SAS | Indocyanine green | PEG/PCL | DCM/EtOH | P = 8–12 MPa; T = 35–45 °C | NP (85–210 nm) | [122] |
SAS | β-carotene | PVP | AC/EtOH | P = 8.5 MPa; T = 40 °C | NP (250 nm) | [44] |
SAS | Celecoxib | PVP | MeOH | P = 15 MPa; T = 40 °C | NP (150–158 nm) | [123] |
SAS | Curcuma | PVP | AC/EtOH | P = 15–21 MPa; T = 35–45 °C | NP (111–210 nm) | [97] |
SAS | Curcumin | PVP | AC/EtOH | P = 10–20 MPa; T = 30–40 °C | NP | [96] |
SAS | Curcumin | PVP | EtOH, AC/EtOH | P = 9–12 MPa; T = 35–50 °C | NP/AGG (51–220 nm) | [94] |
SAS | Curcumin | PVP | AC/EtOH | P = 9 MPa T = 40 °C | NP 140 nm | [124] |
SAS | Diflunisal | PVP | AC/DCM | P = 12–14 MPa; T = 35 °C | cNP | [83] |
SAS | Fisetin | PVP | EtOH/DCM | P = 10 MPa; T = 45 °C | NP (72–83 nm) | [95] |
SAS | Folic acid | PVP | DMSO | P = 15 MPa; T = 40 °C | NP (50–180 nm) | [98] |
SAS | Ezetimibe | PVP, HPC | EtOH | P = 15 MPa, T = 40 °C with PVP; P = 12–18 MPa, T = 40–50 °C with HPC | NP (210–230 nm with PVP; 150–240 nm with HPC) | [93] |
SAS | Insulin | HPMC | DMSO/AC | P = 12 MPa; T = 32 °C | NP (140 nm) | [89] |
SAS | Lercanidipine | HPMC | EtOH/ DCM | P = 15 MPa; T = 40 °C | NP (224–236 nm) | [99] |
SAS | Megestrol acetate | HPMC | EtOH/ DCM | P = 15 MPa; T = 40 °C | NP (136–246 nm) | [99] |
SAS | Megestrol acetate | HPMC | EtOH/ DCM | P = 15 MPa; T = 40 °C | NP (135–180 nm) | [125] |
SAS | Resveratol | HPMC, HPMC/ poloxamer | MeOH/ DCM | P = 12 MPa; T = 40° C | cNP, NP (182–259 nm) | [88] |
SAS | Felodipine | HPMC/ poloxamers/ HCO-60 | EtOH/ DCM | P = 10 MPa; T = 45 °C | cNP (200–250 nm) | [29] |
SAS | Ibuprofen | EL100 | AC | P = 12–20 MPa; T = 40 °C | NP (80–210 nm) | [42] |
SAS | Naproxen | EL100 | EtOH | P = 15–20 MPa; T = 40 °C | NP (80–150 nm) | [42] |
SAS | Quercetin | EC | EtAc | P = 10 MPa; T = 35 °C | cNP/AGG (180–270 nm) | [100] |
SAS | Rifampicin | EC | EtAc, EtAc/ DMSO | P = 10 MPa; T = 35–60 °C | NP + NC, NP (139–230 nm) | [81] |
SAS | Resveratrol | HP-β-CD | EtOH | P = 12 MPa; T = 40 °C | NP | [126] |
SAS | Irbesartan | Pluronic F127 | EtOH | P = 10–20 MPa; T = 40–73 °C | NP (97 nm) | [127] |
SAS | Ivermectin | PMMA | AC | P = 9–11 MPa; T = 40–60 °C | cNP, NP (50–170 nm) | [128] |
SAS | Hesperidin | Stearic acid | DMSO | P = 14–20 MPa; T = 35–40 °C | NP (152–267 nm) | [129] |
SASD | Carbamazepine | - | MeOH | P = 12–17 MPa; T = 50 °C | NP (95–120 nm) | [103] |
SAS-EM | Griseofulvin | - | THF, DCM | P= 9.7 MPa; T = 35 °C | NP (130–210 nm); NC (~200 nm) | [101] |
SAS-EM | Tetracycline | - | THF | P= 9.7 MPa; T = 35 °C | AGG, NP (125–230 nm) | [102] |
SEDS | Puerarin | - | EtOH/DCM | P = 12 MPa; T = 40° C | NP (188 nm) | [104] |
SEDS | Astaxanthin | PVP | AC/EtOH | P = 8–15 MPa; T = 40–60 °C. | NP (99–203 nm) | [105] |
SEDS | Lycopene | β-CD | DMF | P = 10–14 MPa; T= 40–50 °C | NP, cNP (40–120 nm) | [43] |
SFEE | Cholesterol acetate, Megestrol acetate | - | H2O, EtAc, toluene | P = 8 MPa; T = 35 °C | NP (192–254 nm) | [26] |
SFEE | α-Tocopherol (vitamin E) | PCL | AC, H2O | P = 8 MPa; T = 40 °C | NP (8–276 nm). | [27] |
SFEE | Hydroxytyrosol-rich olive oil | Eudraguard® | EtAc/H2O | P = 8.5 MPa; T = 38 °C | NP 230 nm | [130] |
SFEE | Indomethacin, ketoprofen | Tripalmitin, Tristearin, Gelucire 50/13 | CHF, H2O | P = 8 MPa; T = 35 °C | NP (10–90 nm) | [40] |
SFEE | Medroxyprogesterone acetate | PHBV, PVA | DCM, H2O | P = 10 MPa; T = 40 °C | NP (183 nm) | [25] |
SFEE | Omega-3 | PCL | AC | P = 8 MPa; T = 40 °C | NP (6–73 nm) | [111] |
SFEE | Quercetin | Soy lecithin | EtAc, H2O | P = 11 MPa; T = 40 °C | NP (190 nm) | [112] |
Technique | Active Compound | Polymer | Solvent | Operating Conditions | Morphology | Reference |
---|---|---|---|---|---|---|
PGSS | Cyclosporine A | - | - | PMIXER = 16–20 MPa; TMIXER = 25–45 °C | NP (150 nm) | [155] |
PGSS | Coenzyme Q10 | PEG | - | PMIXER = 20–25 MPa; TMIXER = 75–80 °C | NP (190 nm) | [37] |
PGSS | Ibuprofen | PEG | - | PMIXER = 20–25 MPa; TMIXER = 50–80 °C | NP (20–200 nm) | [131] |
PGSS | Insulin + human growth hormone | PEG | - | PMIXER = 15 MPa; TMIXER = 50 °C | NP (197 nm) | [156] |
PGSS | Riboflavin (vitamin B2) | FHCO, PEG | H2O | PMIXER = 10–25 MPa; TMIXER = 65 °C | NP (61–223 nm) | [132] |
SAA-HCM | Doxorubicin hydrochloride | Chitosan | acetic acid/ H2O | PMIXER = 8–12 MPa, TMIXER = 70 °C; TPREC = 90 °C | NP (120–250 nm) | [140] |
SAA | Erythromicin | - | MeOH, EtOH | PMIXER = 9 MPa for MeOH and 9.6 MPa for EtOH, TMIXER = 80 °C; PPREC = 0.1 MPa, TPREC = 80 °C for MeOH and 75 °C for EtOH | NP (< 500 nm) | [133] |
SAA | Lysozyme | - | EtOH/H2O | PMIXER= 8 MPa, TMIXER = 45–60 °C | [157] | |
SAA | Rifampicin | PDLLA | AC | PMIXER= 8.5 MPa, TMIXER = 80 °C; PPREC = 0.07 MPa, TPREC = 40 °C | NP (123–148 nm) | [36] |
SAILA | β-Carotene | - | AC | PMIXER= 7–9 MPa, TMIXER = 80 °C | NP (37–90 nm) | [148] |
SAILA | α-Tocopherol | - | AC, EtOH | PMIXER= 10 MPa, TMIXER = 50–80 °C | NP (220–240 nm) | [152] |
SAILA | Luteolin | Zein | EtOH/H2O | PMIXER= 9.2 MPa, TMIXER = 60 °C | NP (250 nm) | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, P.; De Marco, I. Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. Appl. Sci. 2021, 11, 1476. https://doi.org/10.3390/app11041476
Franco P, De Marco I. Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. Applied Sciences. 2021; 11(4):1476. https://doi.org/10.3390/app11041476
Chicago/Turabian StyleFranco, Paola, and Iolanda De Marco. 2021. "Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review" Applied Sciences 11, no. 4: 1476. https://doi.org/10.3390/app11041476
APA StyleFranco, P., & De Marco, I. (2021). Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. Applied Sciences, 11(4), 1476. https://doi.org/10.3390/app11041476