Analysis of the Propagation in High-Speed Interconnects for MIMICs by Means of the Method of Analytical Preconditioning: A New Highly Efficient Evaluation of the Coefficient Matrix
Abstract
:1. Introduction
2. Background: Formulation of the Problem and Matrix Equation
3. Fast Evaluation of the Matrix Coefficients
4. Numerical Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Michalski, K.A.; Zheng, D. Rigorous analysis of open microstrip lines of arbitrary cross section in bound and leaky regimes. IEEE Trans. Microw. Theory Tech. 1989, 37, 2005–2010. [Google Scholar] [CrossRef]
- Zhu, L.; Yamashita, E. New method for the analysis of dispersion characteristics of various planar transmission lines with finite metallization thickness. IEEE Microw. Guided Wave Lett. 1991, 1, 164–166. [Google Scholar] [CrossRef]
- Hsu, C.-I.G.; Harrington, R.F.; Michalski, K.A.; Zheng, D. Analysis of multiconductor transmission lines of arbitrary cross section in multilayered uniaxial media. IEEE Trans. Microw. Theory Tech. 1993, 41, 70–78. [Google Scholar] [CrossRef]
- Olyslager, F.; De Zutter, D.; Blomme, K. Rigorous analysis of the propagation characteristics of general lossless and lossy muticonductor transmission lines in multilayered media. IEEE Trans. Microw. Theory Tech. 1993, 41, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J.; Medina, F.; Boix, R.R. Full-wave analysis of nonplanar transmission lines on layered medium by means of MPIE and complex image theory. IEEE Trans. Microw. Theory Tech. 2001, 49, 177–185. [Google Scholar] [CrossRef]
- Bernal, J.; Mesa, F.; Medina, F. 2-D analysis of leakage in printed-circuit lines using discrete complex-images technique. IEEE Trans. Microw. Theory Tech. 2002, 50, 1895–1900. [Google Scholar] [CrossRef]
- Chen, H.H. Finite-element method coupled with method of lines for the analysis of planar or quasi-planar transmission lines. IEEE Trans. Microw. Theory Tech. 2003, 51, 848–855. [Google Scholar] [CrossRef]
- Su, K.Y.; Kuo, J.T. An efficient analysis of shielded single and multiple coupled microstrip lines with the nonuniform fast Fourier transform (NUFFT) technique. IEEE Trans. Microw. Theory Tech. 2004, 52, 90–96. [Google Scholar] [CrossRef]
- Hwang, J.-N. A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer. IEEE Trans. Microw. Theory Tech. 2005, 53, 653–659. [Google Scholar] [CrossRef]
- Tong, M.; Pan, G.; Lei, G. Full-wave analysis of coupled lossy transmission lines using multiwavelet-based method of moments. IEEE Trans. Microw. Theory Tech. 2005, 53, 2362–2370. [Google Scholar] [CrossRef]
- Migliore, M.D.; Pinchera, D.; Lucido, M.; Schettino, F.; Panariello, G. A sparse recovery approach for pattern correction of active arrays in presence of element failures. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1027–1030. [Google Scholar] [CrossRef]
- Pinchera, D.; Migliore, M.D.; Lucido, M.; Schettino, F.; Panariello, G. A compressive-sensing inspired alternate projection algorithm for sparse array synthesis. Electronics 2017, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Tsalamengas, J.L. Quadrature rules for weakly singular, strongly singular, and hypersingular integrals in boundary integral equation methods. J. Comput. Phys. 2015, 303, 498–513. [Google Scholar] [CrossRef]
- Bulygin, V.S.; Gandel, Y.V.; Nosich, A.I. Nystrom-type method in three-dimensional electromagnetic diffraction by a finite PEC rotationally symmetric surface. IEEE Trans. Antennas Propag. 2012, 60, 4710–4718. [Google Scholar] [CrossRef]
- Muller, C. Foundations of the Mathematical Theory of Electromagnetic Waves; Springer: Berlin, Germany, 1969. [Google Scholar]
- Coluccini, G.; Lucido, M.; Panariello, G. Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes. IEEE Trans. Microw. Theory Tech. 2013, 61, 736–745. [Google Scholar] [CrossRef]
- Hongo, K. Diffraction by a flanged parallel-plate waveguide. Radio Sci. 1972, 7, 955–963. [Google Scholar] [CrossRef]
- Hongo, K.; Ishii, G. Diffraction of an electromagnetic plane wave by a thick slit. IEEE Trans. Antennas Propag. 1978, 26, 494–499. [Google Scholar] [CrossRef]
- Eswaran, K. On the solutions of a class of dual integral equations occurring in diffraction problems. Proc. R. Soc. Lond. Ser. A 1990, 429, 399–427. [Google Scholar]
- Veliev, E.I.; Veremey, V.V. Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures. In Analytical and Numerical Methods in Electromagnetic Wave Theory; Hashimoto, M., Idemen, M., Tretyakov, O.A., Eds.; Science House: Tokyo, Japan, 1993; pp. 470–514. [Google Scholar]
- Davis, M.J.; Scharstein, R.W. Electromagnetic plane wave excitation of an open-ended finite-length conducting cylinder. J. Electromagn. Waves Appl. 1993, 7, 301–319. [Google Scholar] [CrossRef]
- Hongo, K.; Serizawa, H. Diffraction of electromagnetic plane wave by rectangular plate and rectangular hole in the conducting plate. IEEE Trans. Antennas Propag. 1999, 47, 1029–1041. [Google Scholar] [CrossRef]
- Bliznyuk, N.Y.; Nosich, A.I.; Khizhnyak, A.N. Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole. Microw. Opt. Technol. Lett. 2000, 25, 211–216. [Google Scholar] [CrossRef]
- Tsalamengas, J.L. Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates. IEEE Trans. Microw. Theory Tech. 2001, 49, 555–559. [Google Scholar] [CrossRef]
- Losada, V.; Boix, R.R.; Medina, F. Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space. IEEE Trans. Geosci. Remote Sens. 2003, 41, 988–997. [Google Scholar] [CrossRef]
- Hongo, K.; Naqvi, Q.A. Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane. Prog. Electromagn. Res. 2007, 68, 113–150. [Google Scholar] [CrossRef] [Green Version]
- Lucido, M.; Panariello, G.; Schettino, F. Electromagnetic scattering by multiple perfectly conducting arbitrary polygonal cylinders. IEEE Trans. Antennas Propag. 2008, 56, 425–436. [Google Scholar] [CrossRef]
- Lucido, M.; Panariello, G.; Schettino, F. TE scattering by arbitrarily connected conducting strips. IEEE Trans. Antennas Propag. 2009, 57, 2212–2216. [Google Scholar] [CrossRef]
- Coluccini, G.; Lucido, M.; Panariello, G. TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior. IEEE Trans. Antennas Propag. 2012, 60, 407–412. [Google Scholar] [CrossRef]
- Lucido, M.; Migliore, M.D.; Pinchera, D. A new analytically regularizing method for the analysis of the scattering by a hollow finite-length PEC circular cylinder. Prog. Electromagn. Res. B 2016, 70, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Nosich, A.I. Method of analytical regularization in computational photonics. Radio Sci. 2016, 51, 1421–1430. [Google Scholar] [CrossRef]
- Steinberg, S. Meromorphic families of compact operators. Arch. Ration. Mech. Anal. 1968, 31, 372–379. [Google Scholar] [CrossRef]
- Park, S.; Balanis, C.A. Dispersion characteristics of open microstrip lines using closed-form asymptotic extraction. IEEE Trans. Microw. Theory Tech. 1997, 45, 458–460. [Google Scholar] [CrossRef]
- Park, S.; Balanis, C.A. Closed-form asymptotic extraction method for coupled microstrip lines. IEEE Microw. Guided Wave Lett. 1997, 7, 84–86. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.; Vahldieck, R.; Bornemann, J. Using selective asymptotics to accelerate dispersion analysis of microstrip lines. IEEE Trans. Microw. Theory Tech. 1998, 46, 1024–1027. [Google Scholar] [CrossRef] [Green Version]
- Lucido, M. An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines. Microw. Opt. Technol. Lett. 2012, 54, 1035–1039. [Google Scholar] [CrossRef]
- Lucido, M. A new high-efficient spectral-domain analysis of single and multiple coupled microstrip lines in planarly layered media. IEEE Trans. Microw. Theory Tech. 2012, 60, 2025–2034. [Google Scholar] [CrossRef]
- Coluccini, G.; Lucido, M. A new high efficient analysis of the scattering by a perfectly conducting rectangular plate. IEEE Trans. Antennas Propag. 2013, 61, 2615–2622. [Google Scholar] [CrossRef]
- Lucido, M. An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 360–363. [Google Scholar] [CrossRef]
- Lucido, M. Complex resonances of a rectangular patch in a multilayered medium: A new accurate and efficient analytical technique. Prog. Electromagn. Res. 2014, 145, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Lucido, M. Scattering by a tilted strip buried in a lossy half-space at oblique incidence. Prog. Electromagn. Res. 2014, 37, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Lucido, M. Electromagnetic scattering by a perfectly conducting rectangular plate buried in a lossy half-space. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6368–6378. [Google Scholar] [CrossRef]
- Lucido, M.; Di Murro, F.; Panariello, G. Electromagnetic scattering from a zero-thickness PEC disk: A note on the Helmholtz-Galerkin analytically regularizing procedure. Prog. Electromagn. Res. Lett. 2017, 71, 7–13. [Google Scholar]
- Meixner, J. The behavior of electromagnetic fields at edges. IEEE Trans. Antennas Propag. 1972, 20, 442–446. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover Publications, Inc.: New York, NY, USA, 1974. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucido, M. Analysis of the Propagation in High-Speed Interconnects for MIMICs by Means of the Method of Analytical Preconditioning: A New Highly Efficient Evaluation of the Coefficient Matrix. Appl. Sci. 2021, 11, 933. https://doi.org/10.3390/app11030933
Lucido M. Analysis of the Propagation in High-Speed Interconnects for MIMICs by Means of the Method of Analytical Preconditioning: A New Highly Efficient Evaluation of the Coefficient Matrix. Applied Sciences. 2021; 11(3):933. https://doi.org/10.3390/app11030933
Chicago/Turabian StyleLucido, Mario. 2021. "Analysis of the Propagation in High-Speed Interconnects for MIMICs by Means of the Method of Analytical Preconditioning: A New Highly Efficient Evaluation of the Coefficient Matrix" Applied Sciences 11, no. 3: 933. https://doi.org/10.3390/app11030933
APA StyleLucido, M. (2021). Analysis of the Propagation in High-Speed Interconnects for MIMICs by Means of the Method of Analytical Preconditioning: A New Highly Efficient Evaluation of the Coefficient Matrix. Applied Sciences, 11(3), 933. https://doi.org/10.3390/app11030933