Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghafari, J.G. Centennial inventory: The changing face of orthodontics. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.A.; Scheffler, N.R.; De Clerck, H.J.; Tulloch, J.F.C.; Behets, C.N. Systematic review of the experimental use of temporary skeletal anchorage devices in orthodontics. Am. J. Orthod. Dentofac. Orthop. 2007, 131 (Suppl. S4), 52–58. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.; Vasudavan, S.; Wilmes, B. CAD/CAM Metallic Printing of a Skeletally Anchored Upper Molar Distalizer. J. Clin. Orthod. 2020, 54, 140–150. [Google Scholar] [PubMed]
- Maino, B.G.; Paoletto, E.; Lombardo, L.; Siciliani, G. A Three-Dimensional Digital Insertion Guide for Palatal Miniscrew Placement. J. Clin. Orthod. 2016, 50, 12–22. [Google Scholar] [PubMed]
- De Gabriele, O.; Dallatana, G.; Riva, R.; Vasuvdavan, S.; Wilmes, B. The Easy Driver for Placement of palatal mini-implants and a maxillary expander in a single appointment. J. Clin. Orthod. 2017, 51, 728–737. [Google Scholar] [PubMed]
- Graf, S.; Hansa, I. Clinical guidelines to integrate temporary anchorage devices for bone-borne orthodontic appliances in the digital workflow. APOS Trends Orthod. 2019, 9, 182–189. [Google Scholar] [CrossRef]
- Graf, S. Direct Printed Metal Devices—The Next Level of Computer-aided Design and Computer-aided Manufacturing Applications in the Orthodontic Care. APOS Trends Orthod. 2017, 7, 253–259. [Google Scholar] [CrossRef]
- Chochlidakis, K.M.; Papaspyridakos, P.; Geminiani, A.; Chen, C.J.; Feng, I.J.; Ercoli, C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 184–190.e12. [Google Scholar] [CrossRef]
- Vaid, N.R. Up in the Air: Orthodontic technology unplugged! APOS Trends Orthod. 2017, 7, 1–5. [Google Scholar] [CrossRef]
- Di Fiore, A.; Meneghello, R.; Graiff, L.; Savio, G.; Vigolo, P.; Monaco, C.; Stellini, E. Full arch digital scanning systems performances for implant-supported fixed dental prostheses: A comparative study of 8 intraoral scanners. J. Prosthodont. Res. 2019, 63, 396–403. [Google Scholar] [CrossRef]
- Lee, R.J.; Moon, W.; Hong, C. Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Carano, A.; Testa, M. The distal jet for upper molar distalization. J. Clin. Orthod. 1996, 30, 374–380. [Google Scholar] [PubMed]
- Wilmes, B.; Drescher, D. A miniscrew system with interchangeable abutments. J. Clin. Orthod. 2008, 42, 574–580. [Google Scholar] [PubMed]
- Claus, D.; Radeke, J.; Zint, M.; Vogel, A.B.; Satravaha, Y.; Kilic, F.; Hibst, R.; Lapatki, B.G. Generation of 3D digital models of the dental arches using optical scanning techniques. Semin Orthod. 2018, 24, 416–429. [Google Scholar] [CrossRef]
- Tarraf, N.E.; Ali, D.M. Present and the future of digital orthodontics. Semin Orthod. 2018, 24, 376–385. [Google Scholar] [CrossRef]
- Graf, S.; Cornelis, M.A.; Hauber Gameiro, G.; Cattaneo, P.M. Computer-aided design and manufacture of hyrax devices: Can we really go digital? Am. J. Orthod. Dentofac. Orthop. 2017, 152, 870–874. [Google Scholar] [CrossRef]
- Baik, H.S.; Kang, Y.G.; Choi, Y.J. Miniscrew-assisted rapid palatal expansion: A review of recent reports. J. World Fed. Orthod. 2020, 9, S54–S58. [Google Scholar] [CrossRef]
- Carlson, C.; Sung, J.; McComb, R.W.; MacHado, A.W.; Moon, W. Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 716–728. [Google Scholar] [CrossRef]
- Kinzinger, G.; Wehrbein, H.; Byloff, F.K.; Yildizhan, F.; Diedrich, P. Innovative Verankerungsalternativen zur Molarendistalisation im Oberkiefer—Eine Übersicht. J. Orofac. Orthop. 2005, 66, 397–413. [Google Scholar] [CrossRef]
- Karaman, A.I.; Basciftci, F.A.; Polat, O. Unilateral Distal Molar Movement with an Implant-Supported Distal Jet Appliance. Angle Orthod. 2002, 72, 167–174. [Google Scholar]
- Wilmes, B.; Drescher, D.; Nienkemper, M. A miniplate system for improved stability of skeletal anchorage. J. Clin. Orthod. 2009, 43, 494–501. [Google Scholar]
- Wilmes, B.; Nanda, R.; Nienkemper, M.; Ludwig, B.; Drescher, D. Correction of upper-arch asymmetries using the Mesial-Distalslider. J. Clin. Orthod. 2013, 47, 648–655. [Google Scholar] [PubMed]
- Papadopoulos, M.A. Efficient Distalization of Maxillary Molars with Temporary Anchorage Devices for the Treatment of Class II Malocclusion. Turk. J. Orthod. 2020, 33, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Kook, Y.A.; Bayome, M.; Trang, V.T.T.; Kim, H.J.; Park, J.H.; Kim, K.B.; Behrents, R.G.G. Treatment effects of a modified palatal anchorage plate for distalization evaluated with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, D.; Savio, G.; Grigolato, L.; Zanata, P.; Berveglieri, C.; Giudice, A.L.L.; Isola, G.; Del Fabbro, M.; Moon, W. A new methodology for the digital planning of micro-implant-supported maxillary skeletal expansion. Med. Devices 2020, 13, 93–106. [Google Scholar] [CrossRef]
- Luis, E.; Pan, H.M.; Sing, S.L.; Bastola, A.K.; Goh, G.D.; Goh, G.L.; Tan, H.K.K.J.; Bajpai, R.; Song, J.; Yeong, W.Y. Silicone 3D Printing: Process Optimization, Product Biocompatibility, and Reliability of Silicone Meniscus Implants. 3D Print Addit. Manuf. 2019, 6, 319–332. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Savio, G.; Rosso, S.; Meneghello, R.; Concheri, G. Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review. Appl. Bionics Biomech. 2018, 2018, 1654782. [Google Scholar] [CrossRef]
- Vandenbroucke, B.; Kruth, J.P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 2007, 13, 196–203. [Google Scholar] [CrossRef]
- Di Fiore, A.; Savio, G.; Stellini, E.; Vigolo, P.; Monaco, C.; Meneghello, R. Influence of ceramic firing on marginal gap accuracy and metal-ceramic bond strength of 3D-printed Co-Cr frameworks. J. Prosthet. Dent. 2020, 124, 75–80. [Google Scholar] [CrossRef]
Fabrication Parameter | Value |
---|---|
Laser power (W) | 90 |
Scan Speed (mm/min) | 800 |
Layer thickness (µm) | 20 |
Hatch spacing (µm) | 60 |
Component | Mass (%) |
---|---|
Co | 63.9 |
Cr | 24.7 |
W | 5.4 |
Mo | 5.0 |
Si | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantarella, D.; Quinzi, V.; Karanxha, L.; Zanata, P.; Savio, G.; Del Fabbro, M. Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement. Appl. Sci. 2021, 11, 928. https://doi.org/10.3390/app11030928
Cantarella D, Quinzi V, Karanxha L, Zanata P, Savio G, Del Fabbro M. Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement. Applied Sciences. 2021; 11(3):928. https://doi.org/10.3390/app11030928
Chicago/Turabian StyleCantarella, Daniele, Vincenzo Quinzi, Lorena Karanxha, Paolo Zanata, Gianpaolo Savio, and Massimo Del Fabbro. 2021. "Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement" Applied Sciences 11, no. 3: 928. https://doi.org/10.3390/app11030928
APA StyleCantarella, D., Quinzi, V., Karanxha, L., Zanata, P., Savio, G., & Del Fabbro, M. (2021). Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement. Applied Sciences, 11(3), 928. https://doi.org/10.3390/app11030928