Large Bandgap Topological Insulator in Oxide APoO3 (A = Be, Mg, Ca, Sr, Ba, and Ra) Perovskite: An Ab Initio Study
Abstract
1. Introduction
2. Computational Method
3. Results and Discussion
3.1. Structural and Electronic Band Structures
3.2. Mechanical Properties
3.3. Surface Band Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438. [Google Scholar] [CrossRef]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 1982, 49, 405. [Google Scholar] [CrossRef]
- Moore, J.E. The birth of topological insulators. Nature 2010, 464, 194. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wen, J.; Zhou, J. First-principles calculation of Z2 topological invariants within the FP-LAPW formalism. Comput. Phys. Commun. 2012, 183, 1849. [Google Scholar] [CrossRef]
- Deng, M.-X.; Ma, R.; Luo, W.; Shen, R.; Sheng, L.; Xing, D.Y. Time-reversal invariant resonant backscattering on a topological insulator surface driven by a time-periodic gate voltage. Sci. Rep. 2018, 8, 12338. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 1995, 44, 405. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L.; Mele, E.J. Topological Insulators in Three Dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef]
- Kou, X.; Fan, Y.; Lang, M.; Upadhyaya, P.; Wang, K.L. Magnetic topological insulators and quantum anomalous hall effect. Solid State Commun. 2015, 215–216, 34. [Google Scholar] [CrossRef]
- Li, Z.; Su, H.; Yang, X.; Zhang, J. Electronic structure of the antiferromagnetic topological insulator candidate GdBiPt. Phys. Rev. B 2015, 91, 235128(R). [Google Scholar] [CrossRef]
- Hallouche, A.; Hamri, A.; Kacimi, S.; Zaoui, A. Magnetic ordering in RPtBi topological insulators from DFT+U calculations. Phys. B 2014, 442, 100. [Google Scholar] [CrossRef]
- Li, C.; Wen, Z. Electronic structure of topological insulators with MM’X half-Heusler compounds using density functional theory. Thin Solid Films 2013, 546, 436. [Google Scholar] [CrossRef]
- Feng, W.; Xiao, D.; Zhang, Y.; Yao, Y. Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke-Johnson density functional. Phys. Rev. B 2010, 82, 235121. [Google Scholar] [CrossRef]
- Lin, H.; Wray, L.A.; Xia, Y.; Xu, S.; Jia, S.; Cava, R.J.; Bansil, A.; Hasan, M.Z. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 2010, 7, 546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Xu, G.Z.; Du, Y.; Liu, E.K.; Liu, Z.Y.; Wang, W.H.; Wu, G.H. A new class of topological insulators from I-III-IV half-Heusler compounds with strong band inversion strength. J. Appl. Phys. 2014, 115, 083704. [Google Scholar] [CrossRef]
- Zhang, X.M.; Xu, G.Z.; Liu, E.K.; Liu, Z.Y.; Wang, W.H.; Wu, G.H. On the influence of tetrahedral covalent-hybridization on electronic band structure of topological insulators from first principles. J. Appl. Phys. 2015, 117, 045706. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chen, M.; Yang, X.-B.; Zhao, Y.-J. Theoretical search for half-Heusler topological insulators. Phys. Rev. B 2015, 91, 094107. [Google Scholar] [CrossRef]
- Chadov, S.; Qi, X.; Kübler, J.; Fecher, G.H.; Felser, C.; Zhang, S.C. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 2010, 9, 541. [Google Scholar] [CrossRef]
- Trimarchi, G.; Zhang, X.; Freeman, A.J.; Zunger, A. Structurally unstable AIIIBiO3 perovskites are predicted to be topological insulators but their stable structural forms are trivial band insulators. Phys. Rev. B 2014, 90, 161111(R). [Google Scholar] [CrossRef]
- Jin, H.; Im, J.; Freeman, A.J. Topological insulator phase in halide perovskite structures. Phys. Rev. B 2012, 86, 121102(R). [Google Scholar] [CrossRef]
- Liu, S.; Kim, Y.; Tan, L.Z.; Rappe, A.M. Strain-Induced Ferroelectric Topological Insulator. Nano Lett. 2016, 16, 1663. [Google Scholar] [CrossRef]
- Lang, L.; Yang, J.-H.; Liu, H.-R.; Xiang, H.J.; Gong, X.G. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys. Lett. A 2014, 378, 290. [Google Scholar] [CrossRef]
- Weeks, C.; Franz, M. Topological insulators on the Lieb and perovskite lattices. Phys. Rev. B 2010, 82, 085310. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Hughes, T.L.; Chang, S.C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 2006, 314, 1757. [Google Scholar] [CrossRef] [PubMed]
- Pi, S.-T.; Wang, H.; Kim, J.; Wu, R.; Wang, Y.-K.; Lu, C.-K. New Class of 3D Topological Insulator in Double Perovskite. J. Phys. Chem. Lett. 2017, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-H.; Zhou, J.; Pi, S.-T.; Wang, Y.-K. Topological insulators double perovskites: A2TePoO6 (A= Ca, Sr, Ba). J. Appl. Phys. 2017, 122, 224902. [Google Scholar] [CrossRef]
- Hada, M.; Norimatsu, K.; Tanaka, S.; Keskin, S.; Tsuruta, T.; Igarashi, K.; Ishikawa, T.; Kayanuma, Y.; Miller, R.J.D.; Onda, K.; et al. Bandgap modulation in photoexcited topological insulator Bi2Te3 via atomic displacements. J. Chem. Phys. 2016, 145, 024504. [Google Scholar] [CrossRef]
- Annese, E.; Okuda, T.; Schwier, E.F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I.P.; Kokh, S.V.E.K.A.; Golyashov, V.A.; et al. Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S. Phys. Rev. B 2018, 97, 205113. [Google Scholar] [CrossRef]
- Afsari, M.; Boochani, A.; Hantezadeh, M.; Elahi, S.M. Topological nature in cubic phase of perovskite CsPbI3: By DFT. Solid State Commun. 2017, 259, 10. [Google Scholar] [CrossRef]
- Yalameha, S.; Saeidi, P.; Nourbakhsh, Z.; Vaez, A.; Ramazani, A. Insight into the topological phase and elastic properties of halide perovskites CsSnX3 (X= I, Br, Cl) under hydrostatic pressures. J. Appl. Phys. 2020, 127, 085102. [Google Scholar] [CrossRef]
- Padilha, J.E.; Pontes, R.B.; Schmidt, T.M.; Miwa, R.H.; Fazzio, A. A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds. Sci. Rep. 2016, 6, 26123. [Google Scholar] [CrossRef]
- Wu, L.; Gu, K.; Li, Q. New families of large band gap 2D topological insulators in ethynyl-derivative functionalized compounds. Appl. Surf. Sci. 2019, 484, 1208. [Google Scholar] [CrossRef]
- Gao, C.-L.; Qian, D.; Liu, C.-H.; Jia, J.-F.; Liu, F. Topological edge states and electronic structures of a 2D topological insulator: Single-bilayer Bi (111). Chin. Phys. B 2013, 22, 067304. [Google Scholar] [CrossRef]
- Mahmud, S.; Alam, M.K. Large bandgap quantum spin Hall insulator in methyl decorated plumbene monolayer: A first-principles study. RSC Adv. 2019, 9, 42194. [Google Scholar] [CrossRef]
- Maxwell, C.R. Physical Properties of Polonium. I. Melting Point, Electrical Resistance, Density, and Allotropy. J. Chem. Phys. 1949, 17, 1288. [Google Scholar] [CrossRef]
- Bagnall, K.W.; D’Eye, R.W.M. The preparation of polonium metal and polonium dioxide. J. Chem. Soc. 1954, 4295–4299. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 1996, 6, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Perdew, J.P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298. [Google Scholar] [CrossRef]
- Wang, Y.; Perdew, J.P. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar]
- Fu, L.; Kane, C.L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302. [Google Scholar] [CrossRef]
- Jin, H.; Rhim, S.H.; Im, J.; Freeman, A.J. Topological Oxide Insulator in Cubic Perovskite Structure. Sci. Rep. 2013, 3, 1651. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-J.; Zhao, E.-J.; Xiang, H.-P.; Hao, X.-F.; Liu, X.-J.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115. [Google Scholar] [CrossRef]
- Lakes, R. Foam Structures with a Negative Poisson’s Ratio. Science 1987, 235, 1038. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.E. Auxetic polymers: A new range of materials. Endeavour 1991, 15, 170. [Google Scholar] [CrossRef]
Lattice Constant a | Bandgap | Cohesive Energy | |
---|---|---|---|
(Å) | (eV) | (eV) | |
BePoO | 4.254 | 0 | 16.73 |
MgPoO | 4.323 | 0 | 18.76 |
CaPoO | 4.366 | 0.861 | 22.43 |
SrPoO | 4.398 | 0.871 | 22.96 |
BaPoO | 4.446 | 0.820 | 23.70 |
RaPoO | 4.471 | 0.810 | 23.03 |
B | G | E | B/G | ||||||
---|---|---|---|---|---|---|---|---|---|
BePoO | 237.0 | 46.8 | 18.8 | 110.2 | 38.50 | 103.5 | 0.198 | 0.344 | 2.86 |
MgPoO | 247.3 | 52.4 | 22.8 | 117.4 | 42.77 | 114.4 | 0.234 | 0.337 | 2.74 |
CaPoO | 261.1 | 56.3 | 26.8 | 124.6 | 47.54 | 126.5 | 0.262 | 0.330 | 2.62 |
SrPoO | 248.2 | 55.6 | 35.0 | 119.8 | 53.24 | 139.1 | 0.363 | 0.306 | 2.25 |
BaPoO | 232.9 | 57.9 | 44.8 | 116.2 | 58.78 | 150.9 | 0.512 | 0.284 | 1.98 |
RaPoO | 225.9 | 60.6 | 49.6 | 115.7 | 60.93 | 155.5 | 0.600 | 0.276 | 1.90 |
() | (m/s) | (m/s) | (m/s) | (K) | |
---|---|---|---|---|---|
BePoO | 5.7545 | 5298.19 | 2586.58 | 2905.61 | 348 |
MgPoO | 5.7976 | 5485.07 | 2716.10 | 3048.67 | 359 |
CaPoO | 5.9446 | 5623.44 | 2827.93 | 3171.33 | 370 |
SrPoO | 6.7427 | 5319.33 | 2809.97 | 3141.26 | 364 |
BaPoO | 7.4724 | 5102.84 | 2804.69 | 3126.34 | 358 |
RaPoO | 9.0001 | 4677.82 | 2601.91 | 2897.61 | 330 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Tung, J.-C. Large Bandgap Topological Insulator in Oxide APoO3 (A = Be, Mg, Ca, Sr, Ba, and Ra) Perovskite: An Ab Initio Study. Appl. Sci. 2021, 11, 1143. https://doi.org/10.3390/app11031143
Lee C-H, Tung J-C. Large Bandgap Topological Insulator in Oxide APoO3 (A = Be, Mg, Ca, Sr, Ba, and Ra) Perovskite: An Ab Initio Study. Applied Sciences. 2021; 11(3):1143. https://doi.org/10.3390/app11031143
Chicago/Turabian StyleLee, Chi-Hsuan, and Jen-Chuan Tung. 2021. "Large Bandgap Topological Insulator in Oxide APoO3 (A = Be, Mg, Ca, Sr, Ba, and Ra) Perovskite: An Ab Initio Study" Applied Sciences 11, no. 3: 1143. https://doi.org/10.3390/app11031143
APA StyleLee, C.-H., & Tung, J.-C. (2021). Large Bandgap Topological Insulator in Oxide APoO3 (A = Be, Mg, Ca, Sr, Ba, and Ra) Perovskite: An Ab Initio Study. Applied Sciences, 11(3), 1143. https://doi.org/10.3390/app11031143