A Novel 3D Titanium Surface Produced by Selective Laser Sintering to Counteract Streptococcus oralis Biofilm Formation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
- -
- MACHINED: Titanium (Ti) IV grade (ASTM F67, Resista, Omegna (VB), Italy.
- -
- DAE (double acid etched): Titanium IV grade (ASTM F67) double acid etched: the first with a solution containing fluorhydric acid and the second with nitric acid (Resista, Omegna (VB), Italy).
- -
- 3D: Porous titanium alloy TiAl6V4 disks were designed with an open cell form (interconnected pores) through SolidWorks® 12.0 (SolidWorks Corp., Concord, MA, USA) and produced by a selective laser melting (SLM) machine (RenAM 500Q—Renishaw, Wotton-under-Edge, United Kingdom). The building parameters were a laser power of 200 W with a speed of 0.9 m/s, as previously described [20].
2.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDX)
2.2. Atomic Force Microscopy (AFM)
2.3. Measurement of Wettability of the Discs
2.4. Microbiological Analysis
2.5. Preparation of Bacterial Suspension
2.6. Determination of Colony-Forming Units (CFUs)
2.7. Biofilm Biomass Assay
2.8. Viability Test
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ni, J.; Ling, H.; Zhang, S.; Wang, Z.; Peng, Z.; Benyshek, C.; Zan, R.; Miri, A.K.; Li, Z.; Zhang, X.; et al. Three-dimensional printing of metals for biomedical applications. Mater. Today Bio 2019, 3, 100024. [Google Scholar] [CrossRef]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. J. Prosthodont. 2020, 29, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.D.; Amirthalingam, S.; Kim, S.L.; Lee, S.S.; Rangasamy, J.; Hwang, N.S. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv. Healthc. Mater. 2017, 6, 1700612. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, G.; Johnson, B.N.; Jia, X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019, 84, 16–33. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, J.; Peng, X.; Su, J. The application of 3D printed surgical guides in resection and reconstruction of malignant bone tumor. Oncol. Lett. 2017, 14, 4581–4584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, Z.; Zhang, T.; Xiu, P.; Cai, H.; Wei, Q.; Fan, D.; Lin, X.; Song, C.; Liu, Z. Functionalization of 3D-printed titanium alloy orthopedic implants: A literature review. Biomed. Mater. 2020, 15, 052003. [Google Scholar] [CrossRef]
- Dinda, G.P.; Song, L.; Mazumder, J. Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition. Metall. Mater. Trans. A 2008, 39, 2914–2922. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.N.; Paul, C.P.; Kukreja, L.M.; Pinkerton, A.J. Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; Modelling and experimental investigation. J. Mater. Process. Technol. 2011, 211, 602–609. [Google Scholar] [CrossRef]
- Heinl, P.; Rottmair, A.; Körner, C.; Singer, R.F. Cellular titanium by selective electron beam melting. Adv. Eng. Mater. 2007, 9, 360–364. [Google Scholar] [CrossRef]
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Galati, M.; Minetola, P. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts. Materials 2019, 12, 4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Shin, Y.K.; Martinez, D.; Manogharan, G.; van Duin, A.C.T. A ReaxFF molecular dynamics study of molecular-level interactions during binder jetting 3D-printing. Phys. Chem. Chem. Phys. 2019, 21, 21517–21529. [Google Scholar] [CrossRef]
- Breckenfeld, E.; Kim, H.; Auyeung, R.C.Y.; Piqué, A. Laser-induced Forward Transfer of Ag Nanopaste. J. Vis. Exp. 2016, e53728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ercole, S.; Cellini, L.; Pilato, S.; Di Lodovico, S.; Iezzi, G.; Piattelli, A.; Petrini, M. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. J. Mater. Sci. Mater. Med. 2020, 31, 84. [Google Scholar] [CrossRef]
- Petrini, M.; Giuliani, A.; Di Campli, E.; Di Lodovico, S.; Iezzi, G.; Piattelli, A.; D’Ercole, S. The Bacterial Anti-Adhesive Activity of Double-Etched Titanium (DAE) as a Dental Implant Surface. Int. J. Mol. Sci. 2020, 21, 8315. [Google Scholar] [CrossRef]
- Pokrowiecki, R.; Mielczarek, A.; Zaręba, T.; Tyski, S. Oral microbiome and peri-implant diseases: Where are we now? Ther. Clin. Risk Manag. 2017, 13, 1529–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, D.C., Jr.; Palmer, P.; Ji, H.F.; Ehrlich, G.D.; Król, J.E. Bacterial Biofilm Growth on 3D-Printed Materials. Front. Microbiol. 2021, 12, 646303. [Google Scholar] [CrossRef]
- McGaffey, M.; Zur Linden, A.; Bachynski, N.; Oblak, M.; James, F.; Weese, J.S. Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation. PLoS ONE 2019, 14, e0212995. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, B.C.; Harris, I.B.; Beckman, T.J.; Reed, D.A.; Cook, D.A. Standards for reporting qualitative research: A synthesis of recommendations. Acad. Med. 2014, 89, 1245–1251. [Google Scholar] [CrossRef]
- Gallorini, M.; Zara, S.; Ricci, A.; Mangano, F.G.; Cataldi, A.; Mangano, C. The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells. Materials 2021, 14, 5308. [Google Scholar] [CrossRef]
- Zhang, Y. Electropolishing Mechanism of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting. Int. J. Electrochem. Sci. 2018, 13, 4792–4807. [Google Scholar] [CrossRef]
- Martinez, M.A.F.; de Balderrama, Í.F.; Karam, P.S.B.H.; de Oliveira, R.C.; de Oliveira, F.A.; Grandini, C.R.; Vicente, F.B.; Stavropoulos, A.; Zangrando, M.S.R.; Sant’Ana, A.C.P. Surface roughness of titanium disks influences the adhesion, proliferation and differentiation of osteogenic properties derived from human. Int. J. Implant Dent. 2020, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Petrini, M.; Costacurta, M.; Ferrante, M.; Trentini, P.; Docimo, R.; Spoto, G. Association between the organoleptic scores, oral condition and salivary β-galactosidases in children affected by halitosis. Int. J. Dent. Hyg. 2014, 12, 213–218. [Google Scholar] [CrossRef]
- D’Ercole, S.; Di Lodovico, S.; Iezzi, G.; Pierfelice, T.V.; D’Amico, E.; Cipollina, A.; Piattelli, A.; Cellini, L.; Petrini, M. Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces. Biomedicines 2021, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- D’Ercole, S.; Di Giulio, M.; Grande, R.; Di Campli, E.; Di Bartolomeo, S.; Piccolomini, R.; Cellini, L. Effect of 2-hydroxyethyl methacrylate on Streptococcus spp. biofilms. Lett. Appl. Microbiol. 2011, 52, 193–200. [Google Scholar] [CrossRef]
- Sridhar, S.; Wang, F.; Wilson, T.G.; Palmer, K.; Valderrama, P.; Rodrigues, D.C. The role of bacterial biofilm and mechanical forces in modulating dental implant failures. J. Mech. Behav. Biomed. Mater. 2019, 92, 118–127. [Google Scholar] [CrossRef]
- Graziani, F.; Gennai, S.; Petrini, M.; Bettini, L.; Tonetti, M. Enamel matrix derivative stabilizes blood clot and improves clinical healing in deep pockets after flapless periodontal therapy: A Randomized Clinical Trial. J. Clin. Periodontol. 2019, 46, 231–240. [Google Scholar] [CrossRef]
- Radunović, M.; Petrini, M.; Vlajic, T.; Iezzi, G.; Di Lodovico, S.; Piattelli, A.; D’Ercole, S. Effects of a novel gel containing 5-aminolevulinic acid and red LED against bacteria involved in peri-implantitis and other oral infections. J. Photochem. Photobiol. B Biol. 2020, 205, 111826. [Google Scholar] [CrossRef]
- Lorenzetti, M.; Dogša, I.; Stošicki, T.; Stopar, D.; Kalin, M.; Kobe, S.; Novak, S. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces 2015, 7, 1644–1651. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; Wang, X.; Qin, G.; Zhang, E. Improvement in antibacterial properties and cytocompatibility of titanium by fluorine and oxygen dual plasma-based surface modification. Appl. Surf. Sci. 2019, 463, 261–274. [Google Scholar] [CrossRef]
- Harris, L.K.; Theriot, J.A. Surface Area to Volume Ratio: A Natural Variable for Bacterial Morphogenesis. Trends Microbiol. 2018, 26, 815–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobbs, A.H.; Lamont, R.J.; Jenkinson, H.F. Streptococcus Adherence and Colonization. Microbiol. Mol. Biol. Rev. 2009, 73, 407–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riool, M.; de Boer, L.; Jaspers, V.; van der Loos, C.M.; van Wamel, W.J.B.; Wu, G.; Kwakman, P.H.S.; Zaat, S.A.J. Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomater. 2014, 10, 5202–5212. [Google Scholar] [CrossRef] [PubMed]
BIOMASS | CFUs | BIOMASS | CFUs | ||||||
---|---|---|---|---|---|---|---|---|---|
EDX analysis | Atomic TI | Pearson’s Correlation | 0.671 * | 0.828 ** | AFM height parameters | Ra | Pearson’s Correlation | −0.793 * | −0.764 * |
Sig. (2-code) | 0.048 | 0.006 | Sig. (2-code) | 0.011 | 0.017 | ||||
atomic O | Pearson’s Correlation | −0.26 | −0.694 * | Rq | Pearson’s Correlation | −0.755 * | −0.824 ** | ||
Sig. (2-code) | 0.499 | 0.038 | Sig. (2-code) | 0.019 | 0.006 | ||||
weight Ti | Pearson’s Correlation | 0.754 * | 0.828 ** | Rmax | Pearson’s Correlation | −0.612 | −0.867 ** | ||
Sig. (2-code) | 0.019 | 0.006 | Sig. (2-code) | 0.08 | 0.002 | ||||
weight O | Pearson’s Correlation | −0.296 | −0.705 * | Sdq | Pearson’s Correlation | −0.706 * | −0.866 ** | ||
Sig. (2-code) | 0.44 | 0.034 | Sig. (2-code) | 0.033 | 0.003 | ||||
TiO2 Stoich. | Pearson’s Correlation | 0.894 ** | 0.705 * | Sdr | Pearson’s Correlation | −0.765 * | −0.758 * | ||
Sig. (2-code) | 0.001 | 0.034 | Sig. (2-code) | 0.016 | 0.018 | ||||
atomic Al | Pearson’s Correlation | 0.976 | 0.596 | Micro-roughness | MRq | Pearson’s Correlation | 0.290 | −0.440 | |
Sig. (2-code) | 0.139 | 0.593 | Sig. (2-code) | 0.450 | 0.203 | ||||
weight Al | Pearson’s Correlation | 0.999 * | 0.444 | Mra | Pearson’s Correlation | 0.354 | −0.400 | ||
Sig. (2-code) | 0.025 | 0.707 | Sig. (2-code) | 0.349 | 0.252 | ||||
Al2O3 Stoich. | Pearson’s Correlation | 0.999* | 0.379 | Msa | Pearson’s Correlation | 0.888 ** | 0.188 | ||
Sig. (2-code) | 0.02 | 0.753 | Sig. (2-code) | 0.001 | 0.602 | ||||
Wettability | WCA | Pearson’s Correlation | −0.710 * | 0.11 | |||||
Sig. (2-code) | 0.032 | 0.777 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ercole, S.; Mangano, C.; Cellini, L.; Di Lodovico, S.; Atalayin Ozkaya, C.; Iezzi, G.; Piattelli, A.; Petrini, M. A Novel 3D Titanium Surface Produced by Selective Laser Sintering to Counteract Streptococcus oralis Biofilm Formation. Appl. Sci. 2021, 11, 11915. https://doi.org/10.3390/app112411915
D’Ercole S, Mangano C, Cellini L, Di Lodovico S, Atalayin Ozkaya C, Iezzi G, Piattelli A, Petrini M. A Novel 3D Titanium Surface Produced by Selective Laser Sintering to Counteract Streptococcus oralis Biofilm Formation. Applied Sciences. 2021; 11(24):11915. https://doi.org/10.3390/app112411915
Chicago/Turabian StyleD’Ercole, Simonetta, Carlo Mangano, Luigina Cellini, Silvia Di Lodovico, Cigdem Atalayin Ozkaya, Giovanna Iezzi, Adriano Piattelli, and Morena Petrini. 2021. "A Novel 3D Titanium Surface Produced by Selective Laser Sintering to Counteract Streptococcus oralis Biofilm Formation" Applied Sciences 11, no. 24: 11915. https://doi.org/10.3390/app112411915
APA StyleD’Ercole, S., Mangano, C., Cellini, L., Di Lodovico, S., Atalayin Ozkaya, C., Iezzi, G., Piattelli, A., & Petrini, M. (2021). A Novel 3D Titanium Surface Produced by Selective Laser Sintering to Counteract Streptococcus oralis Biofilm Formation. Applied Sciences, 11(24), 11915. https://doi.org/10.3390/app112411915