Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study
Abstract
:1. Introduction
2. Project Overview
3. Numerical Simulation Analysis of Overburden Movement and Failure
3.1. Model Establishment
3.2. Simulation Scheme
- (1)
- Scheme 1: When the strip width is 8 m and the strength of the fixed filling body is 5 MPa, the movement and deformation of roof surrounding rock and surface after four-wheel strip filling with different filling rates are studied.
- (2)
- Scheme 2: When the strip width is 8 m and the fixed filling rate is 98%, study the movement and deformation of roof surrounding rock and surface after four-wheel strip filling.
3.3. Influence of Filling Ratio on Movement and Failure of Overburden
- (1)
- Analysis of overburden and surface deformation
- (2)
- Stress analysis of overburden and backfill
3.4. Influence of Backfill Strength on Overburden Movement and Failure
- (1)
- Analysis of overburden and surface deformation
- (2)
- Stress analysis of overburden and backfill
4. Engineering Practice of Strip Paste Filling
4.1. Roadway Surrounding Rock Deformation Monitoring
4.2. Monitoring of Overburden Displacement
4.3. Filling Stress Monitoring
5. Conclusions
- (1)
- Different filling rates and filling strength have different effects on the roof surrounding rock and surface movement and deformation. To ensure the filling effect, it is mainly to improve the filling rate.
- (2)
- The filling stress and roof tensile stress gradually decrease with the roadway filling, but the first and second rounds of filling stress and roof tensile stress are much greater than the fourth round.
- (3)
- After the first round and the second round of roadway filling, the maximum total deformation of the surrounding rock of the main transportation roadway is 8 mm and 16 mm, respectively. Therefore, the movement of overburden is controllable, which will not affect the normal production of the working face.
- (4)
- During the first round of mining and filling, the overburden pressure is not transferred to the filling. During the second round of filling, the stress value of the first round of filling increases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.X.; Dong, J.F.; Wu, Y.Y.; Jin, W.L. Corrosion-induced concrete cracking model considering corrosion product-filled paste at the concrete/steel interface. Constr. Build. Mater. 2016, 116, 273–280. [Google Scholar] [CrossRef]
- Doherty, J.P.; Hasan, A.; Suazo, G.H.; Fourie, A. Investigation of some controllable factors that impact the stress state in cemented paste backfill. Can. Geotech. J. 2015, 52, 1901–1912. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Wang, C.X.; Cui, B.Q.; Guo, H.; Li, H.; Guo, Y.L. Effect of sulfate mine water on the durability of filling paste. Int. J. Green Energy 2018, 15, 864–873. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J.; Qian, D. Experimental and numerical investigation on a novel support system for controlling roadway deformation in underground coal mines. Energy Sci. Eng. 2020, 8, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.X.; Liu, Y.; Hu, H.; Li, Y.Y.; Lu, Y. Study on Filling Material Ratio and Filling Effect: Taking Coarse Fly Ash and Coal Gangue as the Main Filling Component. Adv. Civ. Eng. 2019, 2019, 2898019. [Google Scholar] [CrossRef]
- Cui, B.Q.; Liu, Y.; Guo, H.; Liu, Z.X.; Lu, Y. Experimental Study on the Durability of Fly Ash-Based Filling Paste in Environments with Different Concentrations of Sulfates. Adv. Mater. Sci. Eng. 2018, 2018, 4315345. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.J.; Li, L.; Tian, J.Y.; Zhang, C.X.; Wang, J.; Yu, E.W.; Xing, Z.P.; Guo, B.W.; Wei, H.Y.; Huo, Z.Y.; et al. Effects of dynamic low temperature during the grain filling stage on starch morphological structure, physicochemical properties, and eating quality of soft japonica rice. Cereal Chem. 2020, 97, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Bede, A.; Scurtu, A.; Ardelean, I. NMR relaxation of molecules confined inside the cement paste pores under partially saturated conditions. Cem. Concr. Res. 2016, 89, 56–62. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J.; Qian, D. Stability control for the rheological roadway by a novel high-efficiency jet grouting technique in deep underground coal mines. Sustainability 2019, 11, 6494. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.J.; Basagaoglu, H.; Marino, M.A. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model. J. Hydrol. 2001, 242, 79–102. [Google Scholar] [CrossRef]
- Dolezalova, H.; Kajzar, V.; Soucek, K.; Stas, L. Analysis of Surface Movements from Undermining in Time. Acta Geodyn. Geomater. 2012, 9, 389–400. [Google Scholar]
- Manekar, G.G.; Shome, D.; Chaudhari, M.P. Prediction of Subsidence Parameters & 3-D Analysis at Balaghat Underground Manganese Mine of MOIL Limited, India. In Proceedings of the ISRM European Rock Mechanics Symposium (EUROCK), Ostrava, Czech Republic, 20–22 June 2017; pp. 1075–1086. [Google Scholar]
- Makeeva, T.G.; Trofimov, V.A. Earth surface subsidence caused by arbitrary underground mining. In Proceedings of the 21st International Scientific Conference on Advanced in Civil Engineering Construction—The Formation of Living Environment (FORM), Moscow State University of Civil Engineering, Moscow, Russia, 25–27 April 2018. [Google Scholar]
- Abdikan, S.; Arikan, M.; Sanli, F.B.; Cakir, Z. Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ. Earth Sci. 2014, 71, 4081–4089. [Google Scholar] [CrossRef]
- Choudhury, P.; Gahalaut, K.; Dumka, R.; Gahalaut, V.K.; Singh, A.K.; Kumar, S. GPS measurement of land subsidence in Gandhinagar, Gujarat (Western India), due to groundwater depletion. Environ. Earth Sci. 2018, 77, 5. [Google Scholar] [CrossRef]
- Zakharov, A.I.; Epov, M.I.; Mironov, V.L.; Chymitdorzhiev, T.N.; Seleznev, V.S.; Emanov, A.F.; Bykov, M.E.; Cherepenin, V.A. Earth Surface Subsidence in the Kuznetsk Coal Basin Caused by Manmade and Natural Seismic Activity According to ALOS PALSAR Interferometry. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 1578–1583. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Kubecka, K.; Bouchal, T.; Bednarik, M.; Drusa, M.; Bendova, M. Utilization of ground subsidence caused by underground mining to produce a map of possible land-use areas for urban planning purposes. Arab. J. Geosci. 2015, 8, 579–588. [Google Scholar] [CrossRef]
- Zhao, X.; Fourie, A.; Veenstra, R.; Qi, C.C. Safety of barricades in cemented paste-backfilled stopes. Int. J. Miner. Metall. Mater. 2020, 27, 1054–1064. [Google Scholar] [CrossRef]
- Yan, B.Q.; Ren, F.H.; Cai, M.F.; Qiao, C. Influence of new hydrophobic agent on the mechanical properties of modified cemented paste backfill. J. Mater. Res. Technol.-JMRT 2019, 8, 5716–5727. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Zhang, Y.J. Effect of free water on the flowability of cement paste with chemical or mineral admixtures. Constr. Build. Mater. 2016, 111, 571–579. [Google Scholar] [CrossRef]
- Yu, Z.B.; Zhu, S.Y.; Wu, Y.; Yu, H.T. Study on the structural characteristics of the overburden under thick loose layer and thin-bed rock for safety of mining coal seam. Environ. Earth Sci. 2020, 79, 9. [Google Scholar] [CrossRef]
- Sun, Y.T.; Bi, R.Y.; Chang, Q.L.; Taherdangkoo, R.; Zhang, J.F.; Sun, J.B.; Huang, J.D.; Li, G.C. Stability Analysis of Roadway Groups under Multi-Mining Disturbances. Appl. Sci. 2021, 11, 7953. [Google Scholar] [CrossRef]
- Zhou, Y.J.; An, B.F.; Zhang, Z.J.; Xue, S.; Hao, X.F. Study on Developmental Rule of Earth’s Surface Fissures under Thick Unconsolidated Layer’s Condition of Thin Bedrock in Coal Mining. Disaster Adv. 2013, 6, 279–288. [Google Scholar]
- Yu, Z.B.; Zhu, S.Y.; Guan, Y.Z.; Hu, D.X. Feasibility of Modifying Coal Pillars to Prevent Sand Flow Under a Thick Loose Layer of Sediment and Thin Bedrock. Mine Water Environ. 2019, 38, 817–826. [Google Scholar] [CrossRef]
- Zhou, D.W.; Wu, K.; Cheng, G.L.; Li, L. Mechanism of mining subsidence in coal mining area with thick alluvium soil in China. Arab. J. Geosci. 2015, 8, 1855–1867. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J.; Sun, J.; Huang, J.; Taherdangkoo, R. New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures. Sustainability 2021, 13, 9315. [Google Scholar] [CrossRef]
- Yang, W.F.; Xia, X.H. Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks. Comput. Geosci. 2013, 52, 199–203. [Google Scholar] [CrossRef]
- Gu, S.C.; Yao, B.Y. Study on Strata Behavior Regularity of 1301 Face in Thick Bedrock of Wei-qiang Coal Mine. In Proceedings of the 2nd International Seminar on Advances in Materials Science and Engineering (ISAMSE), Singapore, 28–30 July 2017. [Google Scholar]
- Hou, D.F.; Li, D.H.; Xu, G.S.; Zhang, Y.B. Superposition model for analyzing the dynamic ground subsidence in mining area of thick loose layer. Int. J. Min. Sci. Technol. 2018, 28, 663–668. [Google Scholar] [CrossRef]
- Morris, P.A. Fine fraction regolith chemistry from the East Wongatha area, Western Australia: Tracing bedrock and mineralization through thick cover. Geochem.-Explor. Environ. Anal. 2013, 13, 21–40. [Google Scholar] [CrossRef]
- Sun, Y.T.; Li, G.C.; Zhang, J.F. Developing Hybrid Machine Learning Models for Estimating the Unconfined Compressive Strength of Jet Grouting Composite: A Comparative Study. Appl. Sci. 2020, 10, 1612. [Google Scholar] [CrossRef]
- Xu, Y.C.; Luo, Y.Q.; Li, J.H.; Li, K.Q.; Cao, X.C. Water and Sand Inrush During Mining Under Thick Unconsolidated Layers and Thin Bedrock in the Zhaogu No. 1 Coal Mine, China. Mine Water Environ. 2018, 37, 336–345. [Google Scholar] [CrossRef]
- Harper, J.T.; Humphrey, N.F.; Meierbachtol, T.W.; Graly, J.A.; Fischer, U.H. Borehole measurements indicate hard bed conditions, Kangerlussuaq sector, western Greenland Ice Sheet. J. Geophys. Res.-Earth Surf. 2017, 122, 1605–1618. [Google Scholar] [CrossRef]
- Seo, W.S.; Kim, J.B. Filling analyses of solder paste in the stencil printing process and its application to process design. Solder. Surf. Mt. Technol. 2013, 25, 145–154. [Google Scholar] [CrossRef]
- Sun, Y.T.; Li, G.C.; Zhang, J.F.; Huang, J.D. Rockburst intensity evaluation by a novel systematic and evolved approach: Machine learning booster and application. Bull. Eng. Geol. Environ. 2021, 80, 8385–8395. [Google Scholar] [CrossRef]
- Chen, S.J.; Li, Y.Y.; Guo, W.J.; Lu, C.; Wang, H.Y.; Yin, D.W. Similar materials of colliery filling for physical simulation experiment. Mater. Res. Innov. 2015, 19, 304–307. [Google Scholar] [CrossRef]
- Li, K.; Stroeven, P.; Stroeven, M.; Sluys, L.J. Estimating permeability of cement paste using pore characteristics obtained from DEM-based modelling. Constr. Build. Mater. 2016, 126, 740–746. [Google Scholar] [CrossRef]
- Sun, Y.T.; Zhang, J.F.; Li, G.C.; Wang, Y.H.; Sun, J.B.; Jiang, C. Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 801–813. [Google Scholar] [CrossRef]
Rock Formation | Thickness /m | Density /kg/m3 | Bulk Modulus /MPa | Shear Modulus /MPa | Tensile Strength /MPa | Internal Friction Angle /° | Cohesion /MPa |
---|---|---|---|---|---|---|---|
Aeolian sand | 5.5 | 1650 | 133 | 79 | 0.00 | 8 | 0.00 |
Lishi loess | 88.2 | 1950 | 233 | 185 | 0.20 | 10 | 0.01 |
Silty clay | 75 | 2240 | 609 | 469 | 1.20 | 25 | 0.02 |
Medium coarse sandstone | 22.4 | 2250 | 1436 | 1062 | 2.50 | 40 | 2.81 |
Sandy mudstone | 2.6 | 2430 | 1047 | 1028 | 0.85 | 41 | 1.93 |
Coal seam | 10.4 | 1420 | 340 | 300 | 0.50 | 36 | 3.40 |
Argillaceous siltstone | 30 | 2760 | 780 | 402 | 3.90 | 39 | 3.14 |
Filling body | — | 1990 | 389 | 233 | 1.00 | 24 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Q.; Yao, X.; Leng, Q.; Cheng, H.; Wu, F.; Zhou, H.; Sun, Y. Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study. Appl. Sci. 2021, 11, 11717. https://doi.org/10.3390/app112411717
Chang Q, Yao X, Leng Q, Cheng H, Wu F, Zhou H, Sun Y. Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study. Applied Sciences. 2021; 11(24):11717. https://doi.org/10.3390/app112411717
Chicago/Turabian StyleChang, Qingliang, Xingjie Yao, Qiang Leng, Hao Cheng, Fengfeng Wu, Huaqiang Zhou, and Yuantian Sun. 2021. "Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study" Applied Sciences 11, no. 24: 11717. https://doi.org/10.3390/app112411717
APA StyleChang, Q., Yao, X., Leng, Q., Cheng, H., Wu, F., Zhou, H., & Sun, Y. (2021). Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study. Applied Sciences, 11(24), 11717. https://doi.org/10.3390/app112411717