Real-Time Exercise Mode Identification with an Inertial Measurement Unit for Smart Dumbbells
Abstract
:1. Introduction
2. The Mode Training and Identification of Data
3. Methodology
3.1. Estimation of Sensor Fusion
3.2. Determination of the Exercise Cycle
3.3. Range of Motion Response for Exercise Modes
4. Algorithm Design
4.1. The General Mathematics for Identification of Modes Action
4.2. Support Vector Machine for Classification of Modes Action
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Miller, M.D.; Thompson, S.R. Infectious Diseases in the Athlete. In DeLee, Drez, & Miller’s Orthopaedic Sports Medicine Principles and Practice, 5th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2015; ISBN 978-1-4557-4376-6. [Google Scholar]
- Bopp, C.M.; Phillips, K.D.; Fulk, L.J.; Hand, G.A. Clinical implications of therapeutic exercise in HIV/AIDS. J. Assoc. Nurses AIDS Care 2003, 14, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C. Clinical implications of exercise immunology. J. Sport Health Sci. 2012, 1, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Ehrman, J.K.; Gordon, P.M.; Visich, P.S.; Keteyian, S.J. (Eds.) Clinical Exercise Physiology; Human Kinetics Publishers: Champaign, IL, USA, 2019; ISBN 9781492546467. [Google Scholar]
- Ostman, C.; Smart, N.A.; Morcos, D.; Duller, A.; Ridley, W.; Jewiss, D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2017, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.H.; Do, J.Y.; Jeong, H.Y.; Lee, S.Y.; Kim, J.C. The clinical significance of physical activity in maintenance dialysis patients. Kidney Blood Press. Res. 2017, 42, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.E.; Sherwood, H.S.; Rogers, N.L.; Bohlken, R.M. Effects of dumbbell and elastic band training on physical function in older inner-city African-American women. Women Health 2002, 36, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Maruyama, T.; Naito, H.; Sinclair, P.J. Effects of exhaustive dumbbell exercise after isokinetic eccentric damage: Recovery of static and dynamic muscle performance. J. Strength Cond. Res. 2009, 23, 2467–2476. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hsu, C.-L.; Liu, Y. An intelligent dumbbell designed for fitness activity monitoring. In Proceedings of the 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE), Longyan, Fujian, China, 8–10 November 2019; International Institute of Knowledge Innovation and Invention (IIKII): Singapore, 2019; pp. 29–32. [Google Scholar]
- Chang, K.; Chen, M.Y.; Canny, J. Tracking free-weight exercises. In UbiComp 2007: Ubiquitous Computing; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4717, pp. 19–37. [Google Scholar]
- Li, C.; Fei, M.; Hu, H.; Qi, Z. Free weight exercises recognition based on dynamic time warping of acceleration data. Commun. Comput. Inf. Sci. 2013, 355, 178–185. [Google Scholar] [CrossRef]
- Soro, A.; Brunner, G.; Tanner, S.; Wattenhofer, R. Recognition and repetition counting for complex physical exercises with deep learning. Sensors 2019, 19, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crema, C.; Depari, A.; Flammini, A.; Sisinni, E.; Haslwanter, T.; Salzmann, S. IMU-Based Solution for automatic detection and classification of exercises in the fitness scenario. In Proceedings of 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Hausberger, P.; Fernbach, A.; Kastner, W. IMU-based smart fitness devices for weight training. In Proceedings of IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 5182–5189. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Z.; Chen, J.; Fourati, H.; Li, R. Fast complementary filter for attitude estimation using low-cost MARG sensors. IEEE Sens. J. 2016, 16, 6997–7007. [Google Scholar] [CrossRef]
- Gui, P.; Tang, L.; Mukhopadhyay, S. MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion. In Proceedings of 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 2004–2009. [Google Scholar] [CrossRef]
- Kim, Y.; Bang, H. Introduction to kalman filter and its applications. In Introduction and Implementations of the Kalman Filter; Govaers, F., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Narasimhappa, M.; Mahindrakar, A.D.; Guizilini, V.C.; Terra, M.H.; Sabat, S.L. An improved sage husa adaptive robust kalman filter for de-noising the MEMS IMU drift signal. In Proceedings of the 2018 Indian Control Conference (ICC), Kanpur, India, 4–6 January 2018; pp. 229–234. [Google Scholar] [CrossRef]
- George, R. Freeweight Training Anatomy: An Illustrated Guide to the Muscles Used While Exercising with Dumbbells, Barbells, and Kettlebells and More; Chou, L., Ed.; Ulysses Press: New York, NY, USA, 2016; ISBN 9781612435350. [Google Scholar]
- Stoppani, J. Encyclopedia of Muscle & Strength, 2nd ed.; Klug, J., Ed.; Human Kinetics: Champaign, IL, USA, 2014; ISBN 1450459749. [Google Scholar]
- Li, Q.; Li, R.; Ji, K.; Dai, W. Kalman Filter and Its Application. In Proceedings of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), Tianjin, China, 1–3 November 2015; pp. 74–77. [Google Scholar]
- Valade, A.; Acco, P.; Grabolosa, P.; Fourniols, J.Y. A Study about Kalman Filters Applied to Embedded Sensors. Sensors 2017, 17, 2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Yu, S.; Zhang, S.; Wang, G.; Liu, S. Quaternion-based unscented kalman filter for accurate indoor heading estimation using wearable multi-sensor system. Sensors 2015, 15, 10872–10890. [Google Scholar] [CrossRef] [PubMed]
- Sivapragasam, C.; Liong, S.-Y.; Pasha, M.F.K. Rainfall and runoff forecasting with SSA–SVM approach. J. Hydroinform. 2001, 3, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000; ISBN 9780521780193. [Google Scholar]
- Ding, X.; Liu, J.; Yang, F.; Cao, J. Random radial basis function kernel-based support vector machine. J. Franklin Inst. 2021, 1–20. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Xing, S.; Sun, C.; Chen, X. Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis. ISA Trans. 2021, 118, 207–218. [Google Scholar] [CrossRef]
USING Range of Motion Threshold | Biceps | Deltoid | Triceps | Shoulder | Squat | Side Lunge | |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Biceps | 1 | 100% | 28% | ||||
Deltoid | 2 | 100% | 18% | 1.6% | 25% | ||
Triceps | 3 | 100% | 1.8% | 1.4% | |||
Shoulder | 4 | 80.2% | |||||
Squat | 5 | 70.4% | |||||
Side lunge | 6 | 73.6% |
USING Support Vector Machine | Biceps | Deltoid | Triceps | Shoulder | Squat | Side Lunge | |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Biceps | 1 | 100% | |||||
Deltoid | 2 | 98% | |||||
Triceps | 3 | 100% | |||||
Shoulder | 4 | 99% | 3% | ||||
Squat | 5 | 100% | |||||
Side lunge | 6 | 2% | 1% | 97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiao, Y.; Hoang, T.; Chang, P.-Y. Real-Time Exercise Mode Identification with an Inertial Measurement Unit for Smart Dumbbells. Appl. Sci. 2021, 11, 11521. https://doi.org/10.3390/app112311521
Shiao Y, Hoang T, Chang P-Y. Real-Time Exercise Mode Identification with an Inertial Measurement Unit for Smart Dumbbells. Applied Sciences. 2021; 11(23):11521. https://doi.org/10.3390/app112311521
Chicago/Turabian StyleShiao, Yaojung, Thang Hoang, and Po-Yao Chang. 2021. "Real-Time Exercise Mode Identification with an Inertial Measurement Unit for Smart Dumbbells" Applied Sciences 11, no. 23: 11521. https://doi.org/10.3390/app112311521
APA StyleShiao, Y., Hoang, T., & Chang, P.-Y. (2021). Real-Time Exercise Mode Identification with an Inertial Measurement Unit for Smart Dumbbells. Applied Sciences, 11(23), 11521. https://doi.org/10.3390/app112311521