Galvanic Phase Coupling of Superconducting Flux Qubits
Abstract
:1. Introduction
2. Two Loops
2.1. Capacitively-Shunted Model for an rf-SQUID
2.2. Directly Coupled Flux Qubits
3. Three Loops
3.1. Qubit Coupling Mediated by a Connecting Loop
3.2. CNOT Gate Fidelity
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Grajcar, M.; Izmalkov, A.; van der Ploeg, S.H.W.; Linzen, S.; Il’ichev, E.; Wagner, T.; Hübner, U.; Meyer, H.-G.; van den Brink, A.M.; Uchaikin, S.; et al. Direct Josephson coupling between superconducting flux qubits. Phys. Rev. B 2005, 72, 020503(R). [Google Scholar] [CrossRef] [Green Version]
- Niskanen, A.O.; Harrabi, K.; Yoshihara, F.; Nakamura, Y.; Tsai, J.S. Spectroscopy of three strongly coupled flux qubits. Phys. Rev. B 2006, 74, 220503(R). [Google Scholar] [CrossRef] [Green Version]
- Izmalkov, A.; Grajcar, M.; van der Ploeg, S.H.W.; Hübner, U.; Il’ichev, E.; Meyer, H.-G.; Zagoskin, A.M. Measurement of the ground-state flux diagram of three coupled qubits as a first step towards the demonstration of adiabatic quantum computation. Europhys. Lett. 2006, 76, 533. [Google Scholar] [CrossRef]
- Kim, M.D.; Hong, J. Coupling of Josephson current qubits using a connecting loop. Phys. Rev. B 2004, 70, 184525. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Guo, C.; Zhang, G.-Q.; Wang, G.; Wu, C. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems. Sci. Rep. 2017, 7, 44251. [Google Scholar] [CrossRef] [Green Version]
- Kapit, E. Quantum simulation architecture for lattice bosons in arbitrary, tunable, external gauge fields. Phys. Rev. A 2013, 87, 062336. [Google Scholar] [CrossRef] [Green Version]
- Lü, X.-Y.; Xiang, Z.-L.; Cui, W.; You, J.Q.; Nori, F. Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers. Phys. Rev. A 2013, 88, 012329. [Google Scholar] [CrossRef] [Green Version]
- Hümmer, T.; Reuther, G.M.; Hänggi, P.; Zueco, D. Nonequilibrium phases in hybrid arrays with flux qubits and nitrogen-vacancy centers. Phys. Rev. A 2012, 85, 052320. [Google Scholar] [CrossRef] [Green Version]
- Savel’ev, S.; Zagoskin, A.M.; Rakhmanov, A.L.; Omelyanchouk, A.N.; Washington, Z.; Nori, F. Two-qubit parametric amplifier: Large amplification of weak signals. Phys. Rev. A 2012, 85, 013811. [Google Scholar] [CrossRef] [Green Version]
- Savel’ev, S.; Zagoskin, A.M.; Omelyanchouk, A.N.; Nori, F. Noise-spectroscopy of multiqubit systems: Determining all their parameters by applying an external classical noise. Chem. Phys. 2010, 375, 180. [Google Scholar] [CrossRef] [Green Version]
- Izmalkov, A.; van der Ploeg, S.H.W.; Shevchenko, S.N.; Grajcar, M.; Il’ichev, E.; Hübner, U.; Omelyanchouk, A.N.; Meyer, H.-G. Consistency of Ground State and Spectroscopic Measurements on Flux Qubits. Phys. Rev. Lett. 2008, 101, 017003. [Google Scholar] [CrossRef]
- van der Ploeg, S.H.W.; Izmalkov, A.; van den Brink, A.M.; Hübner, U.; Grajcar, M.; Il’ichev, E.; Meyer, H.-G.; Zagoskin, A.M. Controllable Coupling of Superconducting Flux Qubits. Phys. Rev. Lett. 2007, 98, 057004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grajcar, M.; Liu, Y.-X.; Nori, F.; Zagoskin, A.M. Switchable resonant coupling of flux qubits. Phys. Rev. B 2006, 74, 172505. [Google Scholar] [CrossRef] [Green Version]
- Geller, M.R.; Donate, E.; Chen, Y.; Fang, M.T.; Leung, N.; Neill, C.; Roushan, P.; Martinis, J.M. Tunable coupler for superconducting Xmon qubits: Perturbative nonlinear model. Phys. Rev. A 2015, 92, 012320. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Neill, C.; Roushan, P.; Leung, N.; Fang, M.; Barends, R.; Kelly, J.; Campbell, B.; Chen, Z.; Chiaro, B.; et al. Qubit Architecture with High Coherence and Fast Tunable Coupling. Phys. Rev. Lett. 2014, 113, 220502. [Google Scholar] [CrossRef] [Green Version]
- Leib, M.; Zoller, P.; Lechner, W. A transmon quantum annealer: Decomposing many-body Ising constraints into pair interactions. Quantum Sci. Technol. 2016, 1, 015008. [Google Scholar] [CrossRef] [Green Version]
- Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Il’ichev, E.; Meyer, H.-G. Parametric amplification by coupled flux qubits. Appl. Phys. Lett. 2014, 104, 162604. [Google Scholar] [CrossRef] [Green Version]
- Tinkham, M. Introduction to Superconductivity; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Meservey, R.; Tedrow, P.M. Measurements of the kinetic inductance of superconducting linear structures. J. Appl. Phys. 1969, 40, 2028. [Google Scholar] [CrossRef]
- Hazard, T.M.; Gyenis, A.; Di Paolo, A.; Asfaw, A.T.; Lyon, S.A.; Blais, A.; Houck, A.A. Nanowire superinductance fluxonium qubit. Phys. Rev. Lett. 2019, 122, 010504. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.D. Circulator function in a Josephson junction circuit and braiding of Majorana zero modes. Sci. Rep. 2021, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.D.; Shin, D.; Hong, J. Double-well potentials in current qubits. Phys. Rev. B 2003, 68, 134513. [Google Scholar] [CrossRef] [Green Version]
- van der Wal, C.H.; ter Haar, A.C.J.; Wilhelm, F.K.; Schouten, R.N.; Harmans, C.J.P.M.; Orlando, T.P.; Lloyd, S.; Mooij, J.E. Quantum superposition of macroscopic persistent-current states. Science 2000, 290, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majer, J.B.; Paauw, F.G.; ter Haar, A.C.J.; Harmans, C.J.P.M.; Mooij, J.E. Spectroscopy on Two Coupled Superconducting Flux Qubits. Phys. Rev. Lett. 2005, 94, 090501. [Google Scholar] [CrossRef] [Green Version]
- Mooij, J.E.; Orlando, T.P.; Levitov, L.; Tian, L.; van der Wal, C.H.; Lloyd, S. Josephson Persistent-Current Qubit. Science 1999, 285, 1036. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.D. Commensurate quantum oscillations in coupled qubits. Phys. Rev. B 2010, 81, 014504. [Google Scholar] [CrossRef] [Green Version]
- Plantenberg, J.H.; de Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 2007, 447, 836. [Google Scholar] [CrossRef]
J/h (GHz) | 0.5 | 1.0 | 2.0 | 3.0 |
---|---|---|---|---|
0.9921 | 0.9977 | 0.9978 | 0.9980 | |
0.6597 | 0.9613 | 0.9974 | 0.9979 | |
0.9390 | 0.9975 | 0.9978 | 0.9980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-D. Galvanic Phase Coupling of Superconducting Flux Qubits. Appl. Sci. 2021, 11, 11309. https://doi.org/10.3390/app112311309
Kim M-D. Galvanic Phase Coupling of Superconducting Flux Qubits. Applied Sciences. 2021; 11(23):11309. https://doi.org/10.3390/app112311309
Chicago/Turabian StyleKim, Mun-Dae. 2021. "Galvanic Phase Coupling of Superconducting Flux Qubits" Applied Sciences 11, no. 23: 11309. https://doi.org/10.3390/app112311309
APA StyleKim, M.-D. (2021). Galvanic Phase Coupling of Superconducting Flux Qubits. Applied Sciences, 11(23), 11309. https://doi.org/10.3390/app112311309