Biological Methods in Biodiesel Production and Their Environmental Impact
Abstract
:1. Introduction
2. Production of Biodiesel by Chemical Transesterification Process
3. Production of Biodiesel by Biological Transesterification Process
- Lipases that show broad specificity, i.e., they act on all ester bonds in the triglyceride molecule (e.g., lipases from Staphylococcus aureus and Candida rugosa).
- Lipases having specificity for positions 1 and 3 in triglycerides (e.g., lipases produced by fungi of the genera Mucor and Aspergillus or by yeast such as Candida lipolytica and Candida dejormance).
- Lipases having specificity for position 2 in triglycerides (e.g., lipase synthesized by Galactomyces geotrichum).
- Selection of new enzyme sources (new microorganisms such as bacteria, fungi, yeast). Researchers have conducted tests on, for example: Pseudomonas, Candida rugose, Burkholderia, Thermomyces lanuginose, Candida Antarctica, and Aspergillus niger [43,50]. Research is also conducted on the direction of the evolution of microorganisms and their rational design in order to increase the tolerance of lipases produced by them to temperatures or the type of solvent [51].
- Using enzymes used so far in other areas, e.g., phospholipases commonly used, inter alia, in the food industry, in fine chemistry or in the production of aromas and fragrances [34,52], and improvement of enzyme production and quality (increase in catalytic efficiency, substrate specificity, thermostability, etc.) by DNA recombination of microorganisms [37,51].
- Improvement of enzyme efficiency (combining several types of lipase [53]). Phospholipids are inhibitors of transesterification because they interfere with lipase. Studies curried out in [54] indicated that it is possible to obtain biodiesel from crude oil by the degumming-transesterification process, in which the phospholipases are used with a soluble lipase.
- Durability of enzyme immobilization on different materials. The kind of material used depends on the immobilization method. For example, the most commonly used materials for immobilizing lipase by adsorption are silica gel, activated carbon, resins, cellulose, etc. In recent years, there has been a growing interest in the use of nanomaterials to immobilize lipases. Magnetic nanoparticles are of particular interest due to their interesting properties, such us: large surface area, high force of adsorption, low toxicity, and easy separation under the magnetic field [55]. In addition, the surface of magnetic nanoparticles can be modified by depositing functional groups thereon (e.g., amino-silane, hydroxyl group) in order to increase stability, enzymatic efficiency, or the possibility of reusing enzymes [56]. Other nanoparticles are also considered for lipase immobilization by adsorption, e.g., silica nanoparticles, metal-organic framework nanoparticles, carbon nanotubes, organic polymers, nanohybrid materials, or modified fibrous materials [43,57,58,59].
- Selection of a co-solvent system in order to improve mass transfer or minimize the inhibitory effect of methanol/glycerol on enzymes.
- Development of a two-step transesterification method to increase product quality and process efficiency.
- Obtaining by-products of the highest market value in order to minimize the costs of biodiesel production.
4. Environmental Impact
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hoang, A.T.; Noor, M.M.; Pham, X.D. Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel. Int. J. Automot. Mech. Eng. 2018, 15, 5110–5125. [Google Scholar]
- Hamelinck, C.; Spottle, M.; Mark, L.; Staats, M. Possibilities of Transport Decarbonising by 2030; ECOFYS: Utrecht, The Netherlands, 2019. [Google Scholar]
- European Environment Agency. Trends and Projections in Europe 2018—Tracking Progress towards Europe’s Climate and Energy Targets; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Technology Roadmap. Biofuels for Transport; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Daniell, J.; Köpke, M.; Simpson, S.D. Commercial Biomass Syngas Fermentation. Energies 2012, 12, 5372–5417. [Google Scholar] [CrossRef] [Green Version]
- Bacenetti, J.; Restuccia, A.; Schillaci, G.; Failla, S. Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renew. Energy 2017, 112, 444–456. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Fukuda, H.; Kondo, A.; Noda, H. Review. Biodiesel Fuel Production by Transesterification of Oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [PubMed]
- Wright, H.J.; Segur, J.B.; Clark, H.V.; Coburn, S.K.; Langdon, E.E.; Dupuis, R.N. A Report on Ester Interchange. Oil Soap 1944, 21, 145–148. [Google Scholar] [CrossRef]
- Marchetti, J.M.; Miguel, V.U.; Errazu, A.F. Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 2007, 11, 1300–1311. [Google Scholar] [CrossRef]
- Nasreen, S.; Nafees, M.; Qureshi, L.A.; Asad, M.S.; Sadiq, A.; Ali, S.D. Review of Catalytic Transesterification Methods for Biodiesel Production. In Biofuels—State of Development; Biernat, K., Ed.; IntechOpen: London, UK, 2018; pp. 93–119. [Google Scholar]
- Vicente, G.; Martinez, M.; Aracil, J. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Technol. 2004, 92, 297–305. [Google Scholar] [CrossRef]
- Ferdous, K.; Uddin, M.R.; Mondal, S.K.; Khan, M.R. Preparation of Biodiesel Using Sulfuric Acid as a Catalyst. In Proceedings of the International Conference on Engineering Research, Innovation and Education 2013, CERIE 2013, SUST, Sylhet, Bangladesh, 11–13 January 2013. [Google Scholar]
- Marchetti, J.M.; Pedernera, M.N.; Schbib, N.S. Production of biodiesel from acid oil using sulfuric acid as catalyst: Kinetics study. Int. J. Low-Carbon Technol. 2010, 6, 38–43. [Google Scholar] [CrossRef]
- Linh, T.H.; Ryu, Y.J.; Seong, D.H.; Lim, S.M. An effective acid catalyst for biodiesel production from impure raw feedstocks. Biotechnol. Bioprocess. Eng. 2013, 18, 242–247. [Google Scholar]
- Pathak, S. Acid catalyzed transesterification. J. Chem. Pharm. Res. 2015, 7, 1780–1786. [Google Scholar]
- Vyas, A.P.; Verma, J.L.; Subrahmanyam, N. A review on FAME production processes. Fuel 2010, 89, 1–9. [Google Scholar] [CrossRef]
- Freedman, B.; Butterfield, R.O.; Pryde, E.H. Transesterification Kinetics of Soybean Oil. J. Am. Oil Chem. Soc. 1986, 63, 1375–1380. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of Biodiesel via Acid Catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Baadhe, R.R.; Potumarthi, R.; Gupta, V.K. Chapter 8—Lipase-Catalyzed Biodiesel Production: Technical Challenges. In Bioenergy Research: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–129. [Google Scholar]
- Harding, K.G.; Dennis, J.S.; von Blottnitz, H.; Harrison, S.T.L. A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. J. Clean. Prod. 2008, 16, 1368–1378. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; de Castro, A.M.; Coelho, M.A.Z.; Freire, D.M.G. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production. Enzym. Res. 2011, 2011, 615803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bancerz, R. Przemysłowe zastosowania lipaz. Postępy Biochem. 2017, 63, 335–341. (In Polish) [Google Scholar]
- Xiao, M.; Mathew, S.; Obbard, J.P. Biodiesel fuel production via transesterification of oils using lipase biocatalyst. GCB Bioenergy 2009, 1, 115–125. [Google Scholar] [CrossRef]
- Adamczak, M.; Bednarski, W. Lipazy—Narzędzie w biotechnologii tłuszczów i olejów. Biotechnologia 1994, 27, 140–153. (In Polish) [Google Scholar]
- Luo, Y.; Zheng, Y.; Jiang, Z.; Ma, Y.; Wei, D. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl. Microbiol. Biotechnol. 2006, 73, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Watanabe, Y.; Sugihara, A.; Tominaga, Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B Enzym. 2002, 17, 133–142. [Google Scholar] [CrossRef]
- Royon, D.; Daz, M.; Ellenrieder, G.; Locatelli, S. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 2007, 98, 648–653. [Google Scholar] [CrossRef]
- Xu, Y.; Du, W.; Zeng, J.; Liu, D. Conversion of Soybean Oil to Biodiesel Fuel Using Lipozyme TL IM in a Solvent-free Medium. Biocatal. Biotransform. 2004, 22, 45–48. [Google Scholar]
- Bélafi-Bakó, K.; Kovács, F.; Gubicza, L.; Hancsók, J. Enzymatic Biodiesel Production from Sunflower Oil by Candida antarctica Lipase in a Solvent-free System. Biocatal. Biotransform. 2002, 20, 437–439. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J. Mol. Catal. B Enzym. 2002, 17, 151–155. [Google Scholar] [CrossRef]
- Jia, F.; Narasimhan, B.; Mallapragada, S. Materials-based strategies for multi-enzyme immobilization and co-localization: A review. Biotechnol. Bioeng. 2014, 111, 209–222. [Google Scholar] [CrossRef]
- Bezerra, C.S.; de Farias Lemos, C.M.G.; de Sousa, M.; Gonçalves, L.R.B. Enzyme immobilization onto renewable polymeric matrixes: Past, present, and future trends. J. Appl. Polym. Sci. 2015, 132, 42125. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Virgen-Ortíz, J.J.; Jiménez-Pérez, M.; Yates, M.; Torrestiana-Sanchez, B.; Rosales-Quintero, A.; Fernandez-Lafuente, R. Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel 2017, 200, 1–10. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, Y. Lipase-Catalyzed Biodiesel Production with Methyl Acetateas Acyl Acceptor. Z. Nat. C 2008, 63, 297–302. [Google Scholar]
- Bisen, P.S.; Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.K.S. Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol. Lett. 2010, 32, 1019–1030. [Google Scholar] [CrossRef]
- Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng. 2009, 102, 1298–1315. [Google Scholar] [CrossRef]
- Lv, L.; Dai, L.; Du, W.; Liu, D. Progress in Enzymatic Biodiesel Production andCommercialization. Processes 2021, 9, 355. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Torrestiana-Sanchez, B.; Dal Magro, L.; Virgen-Ortíz, J.J.; Suarez-Ruíz, F.J.; Rodrigues, R.C.; Fernandez-Lafuente, R. Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renew. Energy 2019, 135, 1–9. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Syazmi, Z.A.H.S.; Mofijur, M.; Pg Abas, A.E.; Bilad, M.R.; Ong, H.C.; Silitonga, A.S. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020, 118, 109526. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.; Sivakumar, V.M.; Surendhar, A.; Thirumarimurugan, M.; Kannadasan, T. Recent Strategy of Biodiesel Production from Waste Cooking Oiland Process Influencing Parameters: A Review. J. Energy 2013, 2013, 926392. [Google Scholar] [CrossRef] [Green Version]
- Sarno, M.; Iuliano, M. Biodiesel production from waste cooking oil. Green Process. Synth. 2019, 8, 53. [Google Scholar] [CrossRef]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.H. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Santaraite, M.; Makareviciene, V. Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends. Processes 2020, 8, 1118. [Google Scholar] [CrossRef]
- Patel, R.L.; Sankhavara, C.D. Biodiesel production from Karanja oil and its use in diesel engine a review. Renew. Sustain. Energy Rev. 2017, 71, 464–474. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Q.; Knothe, G.; Lu, M. Direct transesterification of spent coffee grounds for biodiesel production. Fuel 2017, 199, 157–161. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel 2016, 181, 1–33. [Google Scholar] [CrossRef]
- Duraiarasan, S.; Razack, S.A.; Manickam, A.; Munusamy, A.; Syed, M.B.; Ali, M.Y.; Ahmed, G.M.; Mohiuddin, M.S. Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilised enzymes using magnetic nanoparticle. J. Environ. Chem. Eng. 2016, 4, 1393–1398. [Google Scholar] [CrossRef]
- Martínez, N.; Callejas, N.; Morais, E.G.; Costa, J.A.V.; Jachmanián, I.; Vieitez, I. Obtaining biodiesel from microalgae oil using ultrasound-assisted in-situ alkaline transesterification. Fuel 2017, 202, 512–519. [Google Scholar] [CrossRef]
- Riosa, N.S.; Pinheiroa, B.B.; Pinheiroa, M.P.; Bezerraa, R.M.; Santosb, J.C.S.; Gonçalvesa, L.R.B. Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process. Biochem. 2018, 75, 99–120. [Google Scholar] [CrossRef]
- Hama, S.; Noda, H.; Kondo, A. How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr. Opin. Biotechnol. 2018, 50, 57–64. [Google Scholar] [CrossRef]
- Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Ortiz, C.; Berenguer-Murcia, A.; Barbosa, O.; Rodrigues, R.C.; Fernandez-Lafuente, R. Lecitase ultra: A phospholipase with great potential in biocatalysis. Mol. Catal. 2019, 473, 110405. [Google Scholar] [CrossRef] [Green Version]
- Hama, S.; Kondo, A. Enzymatic biodiesel production: An overview of potential feedstocks and process development. Bioresour. Technol. 2013, 135, 386–395. [Google Scholar] [CrossRef]
- Cesarini, S.; Pastor, F.I.J.; Nielsen, P.M.; Diaz, P. Moving towards a competitive fully enzymatic biodiesel process. Sustainability 2015, 7, 7884–7903. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.; Yang, L.; Wang, Z.; Luo, W.; Li, H.; Lv, P.; Yuan, Z. Lipase immobilization on amino-silane modified superparamagnetic Fe3O4. nanoparticles as biocatalyst for biodiesel production. Fuel 2018, 224, 774–782. [Google Scholar] [CrossRef]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol. 2019, 103, 7399–7423. [Google Scholar] [CrossRef]
- Zhong, L.; Feng, Y.; Wang, G.; Wanga, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Cipolatti, E.P.; Silva, M.J.A.; Kleina, M.; Feddern, V.; Feltes, M.M.C.; Oliveira, J.V.; Ninow, J.L.; de Oliveira, D. Current status and trends in enzymatic nanoimmobilization. J. Mol. Catal. B Enzym. 2014, 99, 56–67. [Google Scholar] [CrossRef]
- Badoei-dalfard, A.; Shahba, A.; Zaare, F.; Sargazi, G.; Seyedalipour, B.; Karami, Z. Lipase immobilization on a novel class of Zr-MOF/electrospun nanofibrous polymers: Biochemical characterization and efficient biodiesel production. Int. J. Biol. Macromol. 2021, 192, 1292–1303. [Google Scholar] [CrossRef]
- Colombo, T.S.; Mazutti, M.A.; Luccio, M.D.; de Oliveira, D.; Oliveira, J.V. Enzymatic synthesis of soybean biodiesel using supercritical carbon dioxide as solvent in a continuous expanded-bed reactor. J. Supercrit. Fluids 2015, 97, 16–21. [Google Scholar] [CrossRef]
- Pollardo, A.A.; Lee, H.S.; Lee, D.; Kim, S.; Kim, J. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant. BMC Biotechnol. 2017, 17, 70. [Google Scholar] [CrossRef] [Green Version]
- Poppe, J.K.; Fernandez-Lafuente, R.; Rodrigues, R.C.; Ayub, M.A.Z. Enzymatic reactors for biodiesel synthesis: Present status and future prospects. Biotechnol. Adv. 2015, 33, 511–525. [Google Scholar] [CrossRef]
- Helwani, Z.; Othman, M.R.; Aziz, N.; Fernando, W.J.N.; Kim, J. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol. 2009, 90, 1502–1514. [Google Scholar] [CrossRef]
- e Silva, W.C.; Freitas, L.; Oliveira, P.C.; de Castro, H.F. Continuous enzymatic biodiesel production from coconut oil in two-stage packed-bed reactor incorporating an extracting column to remove glycerol formed as by-product. Bioprocess. Biosyst. Eng. 2016, 39, 1611–1617. [Google Scholar] [CrossRef]
- Fidalgo, W.R.R.; Ceron, A.; Freitas, L.; Santos, J.C.; de Castro, H.F. A fluidized bed reactor as an approach to enzymatic biodiesel production in a process with simultaneous glycerol removal. J. Ind. Eng. Chem. 2016, 38, 217–223. [Google Scholar] [CrossRef]
- da Silva, C.; Oliveira, J.V. Biodiesel production through non-catalytic supercritical transesterification: Current state and perspectives. Braz. J. Chem. Eng. 2014, 31, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, S.R.; Sunol, A.K.; Philippidis, G. Status and prospects of supercritical alcohol transesterification for biodiesel production. WIREs Energy Environ. 2017, 6, 252. [Google Scholar] [CrossRef]
- Dehghan, L.; Golmakani, M.T.; Hosseini, S.M.H. Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production. Renew. Energy 2019, 138, 915–922. [Google Scholar] [CrossRef]
- Milano, J.; Ong, H.C.; Masjuki, H.H.; Silitonga, A.S.; Chene, W.H.; Kusumo, F.; Dharma, S.; Sebayang, A.H. Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Convers. Manag. 2018, 158, 400–415. [Google Scholar] [CrossRef]
- Ding, H.; Ye, W.; Wang, Y.; Wang, X.; Li, L.; Liu, D.; Gui, J.; Song, C.; Ji, N. Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids. Energy 2018, 144, 957–967. [Google Scholar] [CrossRef]
- Pukale, D.D.; Maddikeri, G.L.; Gogate, P.R.; Pandit, A.B.; Pratap, A.P. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst. Ultrason. Sonochem. 2015, 22, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 2019, 235, 886–907. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF (accessed on 2 November 2021).
- Ravindra, P.; Saralan, S.; Abdulla, R. LCA studies for alkaline and enzyme catalyzed biodiesel production from palm oil. Adv. Biol. Chem. 2012, 2, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Marcia, C.S.D.; Hugo, G.D.V.; André, F.Y.; Fernando, L.P.P.; Andrea, M.S. Life cycle assessment of biodiesel produced by the methylic-alkaline and ethylic-enzymatic routes. Fuel 2017, 208, 329–336. [Google Scholar]
- Peñarrubia Fernandez, I.A.; Liu, D.-H.; Zhao, J. LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions. Resour. Conserv. Recycl. 2017, 119, 117–127. [Google Scholar] [CrossRef]
Parameter | Alkali-Catalyzed Process | Acid-Catalyzed Process | Enzyme-Catalyzed Process |
---|---|---|---|
Reaction temperature | (60–70) °C | (70–120) °C | (20–40) °C |
Reaction time | (1–8) h | (3–50) h | (4–72) h |
Biodiesel yield | (86–99)% | 97% | (86–100)% |
Alcohol to oil ratio | (3.3–6):1 | (20–30):1 | (4–6):1 |
Free acids in raw material | Products of saponification | Esters | Esters |
Water in raw material | Affects negatively | - | Depends on the type and form of lipase and the presence of organic solvent |
Glycerol separation | Hard | Hard | Easy |
Purification of product | Washing | Washing | Not necessary |
Cost of catalyst | Low | Low | High |
Energy consumption | High | High | Lower than in alkali- and acid-catalyzed processes |
Corrosion | Low | High | Low |
Biodiesel Production Pathway | Default GHG Emission (gCO2eq/MJ) | Default GHG Saving (%) |
---|---|---|
rape seed biodiesel | 52 | 38 |
sunflower biodiesel | 42 | 51 |
soybean biodiesel | 58 | 31 |
palm oil biodiesel (process not specified) | 68 | 19 |
palm oil biodiesel (process with methane capture at oil mill) | 37 | 56 |
waste vegetable or animal oil biodiesel | 14 | 83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biernat, K.; Matuszewska, A.; Samson-Bręk, I.; Owczuk, M. Biological Methods in Biodiesel Production and Their Environmental Impact. Appl. Sci. 2021, 11, 10946. https://doi.org/10.3390/app112210946
Biernat K, Matuszewska A, Samson-Bręk I, Owczuk M. Biological Methods in Biodiesel Production and Their Environmental Impact. Applied Sciences. 2021; 11(22):10946. https://doi.org/10.3390/app112210946
Chicago/Turabian StyleBiernat, Krzysztof, Anna Matuszewska, Izabela Samson-Bręk, and Marlena Owczuk. 2021. "Biological Methods in Biodiesel Production and Their Environmental Impact" Applied Sciences 11, no. 22: 10946. https://doi.org/10.3390/app112210946
APA StyleBiernat, K., Matuszewska, A., Samson-Bręk, I., & Owczuk, M. (2021). Biological Methods in Biodiesel Production and Their Environmental Impact. Applied Sciences, 11(22), 10946. https://doi.org/10.3390/app112210946